Skip to main content
Log in

Study of Hard Ionizing Radiation Generation Regions in an Atmospheric Discharge

  • PLASMA, HYDRO- AND GAS DYNAMICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The distributions of time and energy parameters of X-ray radiation of the nanosecond megavolt atmospheric discharge of “reverse-conical cathode with a tip–grid anode” configuration have been measured for the first time on the coordinate along the discharge axis with a resolution of 12 cm. The discharge gap length is 60.5 cm and the maximum applied voltage is 1.2 MV with a front rise time of ~220 ns. The photon energy has been evaluated using lead filters of stepped attenuation with thicknesses up to 10 mm. About 1200 axial discharges have been examined. It has been found that radiation pulses are clustered in time and arise together with features of the time derivative of the applied voltage. The most intense and hard X-ray and gamma radiation is observed at the time when the applied voltage reaches its maximum value. The radiation energy from the anode region exceeds the radiation energy from the gas gap by a factor of 5–8. Radiation energy maxima are also observed near the cathode region. The maximum photon energy does not exceed ~400 keV. The amplitude spectra of ionizing radiation are studied. Relativistic electrons deceleration in the anode material can be the bremsstrahlung source for the observed radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Rahman, P. Hettiarachchi, V. Cooray, J. Dwyer, V. Rakov, and H. K. Rassoul, Atmosphere 10 (4), 169 (2019). https://doi.org/10.3390/atmos10040169

    Article  ADS  Google Scholar 

  2. P. O. Kochkin, C. V. Nguyen, A. P. van Deursen, and U. Ebert, J. Phys. D: Appl. Phys. 45, 425202 (2012). https://doi.org/10.1088/0022-3727/45/42/425202

  3. P. O. Kochkin, A. P. van Deursen, and U. Ebert, J. Phys. D: Appl. Phys. 48, 025205 (2014). https://doi.org/10.1088/0022-3727/48/2/025205

  4. P. Kochkin, C. Köhn, U. Ebert, and L. van Deursen, Plasma Sources Sci. Technol. 25, 044002 (2016). https://doi.org/10.1088/0963-0252/25/4/044002

  5. P. Hettiarachchi, V. Cooray, M. Rahman, and J. Dwyer, Atmosphere 8 (12), 244 (2017). https://doi.org/10.3390/atmos8120244

    Article  ADS  Google Scholar 

  6. N. A. Bogatov, A. Y. Kostinskiy, V. S. Syssoev, M. G. Andreev, M. U. Bulatov, D. I. Sukharevsky, and V. A. Rakov, J. Geophys. Res.: Atmos. 125, e2019JD031826 (2020). https://doi.org/10.1029/2019JD031826

  7. E. V. Oreshkin, S. A. Barengolts, S. A. Chaikovsky, A. V. Oginov, K. V. Shpakov, and V. A. Bogachenkov, Phys. Plasmas 19, 013108 (2012). https://doi.org/10.1063/1.3677267

  8. A. V. Agafonov, V. A. Bogachenkov, A. P. Chubenko, A. V. Oginov, A. A. Rodionov, A. S. Rusetskiy, and K. V. Shpakov, J. Phys. D: Appl. Phys. 50, 165202 (2017). https://doi.org/10.1088/1361-6463/aa5dba

  9. A. V. Agafonov, A. V. Oginov, and K. V. Shpakov, Phys. Part. Nucl. Lett. 9, 380 (2012). https://doi.org/10.1134/S1547477112040024

    Article  Google Scholar 

  10. I. M. Kutsyk, L. P. Babich, E. N. Donskoi, and E. I. Bochkov, JETP Lett. 95, 631 (2012). https://doi.org/10.1134/S0021364012120090

    Article  ADS  Google Scholar 

  11. L. P. Babich, E. I. Bochkov, and I. M. Kutsyk, JETP Lett. 99, 386 (2014). .https://doi.org/10.1134/S0021364014070029

    Article  ADS  Google Scholar 

  12. A. V. Agafonov, A. V. Oginov, A. A. Rodionov, V. A. Ryabov, and K. V. Shpakov, Plasma Sources Sci. Technol. 28, 095014 (2019). https://doi.org/10.1088/1361-6595/ab3c79

  13. I. D. Kostyrya, D. V. Rybka, and V. F. Tarasenko, Instrum. Exp. Tech. 55, 72 (2012). https://doi.org/10.1134/S0020441212010071

    Article  Google Scholar 

  14. A. V. Gurevich, G. K. Garipov, A. M. Almenova, V. P. Antonova, A. P. Chubenko, O. A. Kalikulov, and K. P. Zybin, Atmos. Res. 211, 73 (2018). https://doi.org/10.1016/j.atmosres.2018.04.018

    Article  Google Scholar 

  15. A. V. Gurevich, A. M. Almenova, V. P. Antonova, A. P. Chubenko, A. N. Karashtin, O. N. Kryakunova, and K. P. Zybin, Phys. Rev. D 94, 023003 (2016). https://doi.org/10.1103/PhysRevD.94.023003

  16. J. R. Dwyer and M. A. Uman, Phys. Rep. 534 (4), 147 (2014). https://doi.org/10.1016/j.physrep.2013.09.004

    Article  ADS  MathSciNet  Google Scholar 

  17. A. A. Rodionov, A. V. Oginov, and K. V. Shpakov, Bull. Russ. Acad. Sci.: Phys. 82, 404 (2018). https://doi.org/10.3103/S1062873818040160

    Article  Google Scholar 

  18. K. Wei, D. Hei, X. Weng, X. Tan, and J. Liu, Appl. Radiat. Isot. 156, 108992 (2020). https://doi.org/10.1016/j.apradiso.2019.108992

  19. I. K. Kikoin, Tables of Physical Constants, Handbook (Atomizdat, Moscow, 1976), p. 974 [in Russian].

    Google Scholar 

  20. https://www.nist.gov/pml/x-ray-and-gamma-ray-data.

  21. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

  22. G. A. Mesyats and I. V. Vasenina, Plasma Phys. Rep. 47, 907 (2021). https://doi.org/10.1134/S1063780X2109004X

    Article  ADS  Google Scholar 

  23. G. A. Mesyats, N. M. Zubarev, and I. V. Vasenina, Bull. Lebedev Phys. Inst. 47, 209 (2020). https://doi.org/10.3103/S1068335620070052

    Article  ADS  Google Scholar 

  24. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).

  25. V. F. Tarasenko, G. V. Naidis, D. V. Beloplotov, D. A. Sorokin, M. I. Lomaev, and N. Yu. Babaeva, Plasma Phys. Rep. 46, 320 (2020). https://doi.org/10.1134/S1063780X20030113

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are particularly grateful to our untimely departed colleagues V.A. Bogachenkov, G.V. Ivanenkov, and V.A. Papadichev.

Funding

This work was supported by the Russian Scientific Foundation, project no. 19-79-30086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Rodionov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by the authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionov, A.A., Agafonov, A.V., Ryabov, V.A. et al. Study of Hard Ionizing Radiation Generation Regions in an Atmospheric Discharge. Jetp Lett. 116, 224–231 (2022). https://doi.org/10.1134/S0021364022601336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601336

Navigation