Skip to main content
Log in

Numerical Simulation of GaAs/AlOx High Index Contrast Subwavelength Gratings for GaAs-Based Vertical Cavity Surface Emitting Lasers

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

A GaAs/AlOx high index contrast subwavelength grating with TE polarization is presented for the GaAs-based vertical cavity surface emitting laser (VCSEL). The rigorous coupled wave analysis (RCWA) method is employed to simulate the dependence between its reflection characteristics and grating parameters. Especially, the effects of the stress buffer layer, shape errors, and angle of incidence on refractivity are also analyzed in detail. The high index contrast subwavelength grating has a large reflection bandwidth up to 97 nm with good polarization selectivity, and exhibits large tolerance in preparation, which makes it easier to integrate with the VCSEL. What’s more, its sensitivity to angle of incidences facilitates the single-mode VCSELs’ implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Z. Zhen-Bo, X. Chen, X. Yi-Yang, Z. Kang, L. Fa, and S. Guang-Di, Chin. Phys. B 21, 3 (2012).

    Google Scholar 

  2. P. S. Yeh, C. C. Chang, Y. T. Chen, D. W. Lin, J. S. Liou, C. C. Wu, J. H. He, and H. C. Kuo, Appl. Phys. Lett. 109, 24 (2016).

    Article  Google Scholar 

  3. Md. Jarez, K. V. Kalosha, B. Dieter, J. Pohl, and M. Weyers, Opt. Express 24, 26 (2016).

    Google Scholar 

  4. W. Zhen-fu, N. Yong-qiang, Z. Yan, S. Jingjing, Z. Xing, Z. Lisen, W. Wei, L. Di, H. Yongsheng, C. Haibing, L. Qin, L. Yun, and W. Lijun, Opt. Express 18, 23 (2010).

    Google Scholar 

  5. W. Xiao-fa, W. Zheng-mao, and X. Guang-qiong, Acta Phys. Sin. 65, 2 (2016).

    Google Scholar 

  6. L. Rui, W. Li-ping, P. Fang-wei, Y. Hao-yu, and L. Chun-jing, J. Quant. Econ. 35, 1 (2018).

    Google Scholar 

  7. B. Kelleher, M. Dillane, and E. A. Viktorov, Light Sci. Appl. 10, 1 (2021).

    Article  Google Scholar 

  8. C. Chih-Hsien, S. Chih-Chiang, K. Hsuan-Yun, H. Dan-Hua, W. Huai-Yung, Y. Yen-Wei, L. Yun-Ting, C. Sung-Wen Huang, T. Cheng-Ting, C. Yu-Chieh, K. Tsung Sheng, W. Chao-Hsin, K. Hao-Chung, L. Po-Tsung, and L. Gong-Ru, Opto-Electron. Adv. 1, 3 (2018).

    Google Scholar 

  9. S. O. Slipchenko, A. A. Podoskin, V. S. Golovin, P. S. Gavtina, V. V. Shamkhox, D. N. Nikolaev, V. V. Zolotarev, N. A. Pikhtin, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, and V. A. Simakov, IEEE Trans. Electron Dev. 67, 1 (2020).

    Article  Google Scholar 

  10. L. Shuo, G. Bao-lu, S. Guo-zhu, and G. Xia, Acta Phys. Sin. 61, 18 (2012).

    Google Scholar 

  11. Z. Tong, J. Zhi-wei, W. An-bang, H. Yan-hua, W. Long-sheng, G. Yuan-yuan, and W. Yun-cai, IEEE Photon. Technol. Lett. 33, 7 (2021).

    Article  Google Scholar 

  12. Z. Xiang-wei, N. Yong-qiang, Q. Li, L. Yun, and W. Li-jun, Chin. J. Lumin. 34, 11 (2013).

    Google Scholar 

  13. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 2 (2004).

    Article  Google Scholar 

  14. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 1, 119 (2007).

    Article  ADS  Google Scholar 

  15. K. Vadim, F. G. Sedgwick, and C. J. Chang-Hasnain, Opt. Express 18, 16 (2010).

    Google Scholar 

  16. C. Tsu-Chi, H. Ehsan, H. Kuo-bin, B. Jörgen, G. Johan, H. Åsa, and L. Tien-chang, ACS Photon. 7, 4 (2020).

  17. C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, J. Opt. 13 (2011).

  18. W. Huang-ming, M. Wen-qin, H. Jin, G. Ding-shan, H. Ran, J. Hong, G. Rui-min, W. Wen-hua, and Z. Zhi-ping, J. Opt. 12, 045703 (2010).

  19. Y. Laaroussi, C. Chevallier, F. Genty, N. Fressengeas, L. Cerutti, T. Taliercio, O. Gauthier-Lafaye, P. F. Calmon, B. Reig, and J. Jacquet, Opt. Mater. Express 3, 1576 (2013).

    Article  ADS  Google Scholar 

  20. R. Yi, Y. Weijian, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 19, 4 (2013).

    Article  Google Scholar 

  21. Y. Hui, Z. Jin, W. Xiao-wei, and H. Xing-fan, Chin. J. Lasers 29, 9 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-Q. Hao.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Hao, YQ. Numerical Simulation of GaAs/AlOx High Index Contrast Subwavelength Gratings for GaAs-Based Vertical Cavity Surface Emitting Lasers. Jetp Lett. 116, 288–292 (2022). https://doi.org/10.1134/S0021364022601154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601154

Navigation