Skip to main content
Log in

Many-Electron Effects in Th 5p and 5s X-Ray Photoelectron Spectra of ThO2

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The Th 5p photoelectron spectrum of the ThO2 oxide exhibits an anomalous spin–orbit splitting, intense satellite, and a poorly observable very strongly broadened Th 5s line. The Th 5p and Th 5s photoelectron spectra are calculated in this work using the configuration interaction and spectral (Green’s) function methods in the basis of atomic Hartree–Fock functions. The results are in good agreement with experiment and indicate that the structure of these spectra is determined by interactions of the photoionization-induced 5p–1 and 5s–1 states with the 5d–25 ff ) and 5p–15d–1f ) satellite states including two holes and one electron in the discrete or continuous spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Teterin and A. Yu. Teterin, Russ. Chem. Rev. 73, 3541 (2004).

    Article  Google Scholar 

  2. K. I. Maslakov, Yu. A. Teterin, S. Stefanovsky, S. N. Kalmykov, A. Yu. Teterin, and K. E. Ivanov, J. Alloys Compd. 712, 36 (2017).

    Article  Google Scholar 

  3. M. Boring and R. D. Cowan, Phys. Rev. B 23, 445 (1981).

    Article  ADS  Google Scholar 

  4. G. M. Bancroft, T. K. Sham, and S. Larsson, Chem. Phys. Lett. 46, 557 (1977).

    Article  ADS  Google Scholar 

  5. T. K. Sham and G. Wendin, Phys. Rev. Lett. 44, 817 (1980).

    Article  ADS  Google Scholar 

  6. M. Ohno, Phys. Rev. B 35, 5453 (1987).

    Article  ADS  Google Scholar 

  7. M. Ya. Amusia, L. V. Chernysheva, and V. G. Yarzhemsky, Handbook of Theoretical Atomic Physics, Data for Photon Absorption, Electron Scattering, and Vacancies Decay (Springer, Berlin, 2012).

    Google Scholar 

  8. V. G. Yarzhemsky, G. B. Armen, and F. P. Larkins, J. Phys. B: At. Mol. Opt. Phys. 26, 2785 (1993).

    ADS  Google Scholar 

  9. V. G. Yarzhemsky, M. Ya. Amusia, P. Bolognesi, and L. Avaldi, J. Phys. B: At. Mol. Opt. Phys. 43, 185204 (2010).

  10. V. G. Yarzhemsky and M. Ya. Amusia, Phys. Rev. A 93, 063406 (2016).

  11. M. Ya. Amus’ya, S. K. Semenov, and L. V. Chernysheva, ATOM-M Algorithms and Research Programs for Atomic and Molecular Processes (Nauka, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  12. M. B. Trzhaskovskaya and V. G. Yarzhemsky, At. Data Nucl. Data Tables 119, 99 (2018).

    Article  ADS  Google Scholar 

  13. G. Wendin, Struct. Bonding 45, 1 (1981).

    Article  Google Scholar 

  14. Yu. A. Teterin, A. V. Sobolev, I. A. Presnyakov, K. I. Maslakov, A. Yu. Teterin, I. V. Morozov, I. O. Chernyavskii, K. E. Ivanov, and A. V. Shevel’kov, J. Exp. Theor. Phys. 124, 251 (2017).

    Article  ADS  Google Scholar 

  15. V. G. Yarzhemskii, Yu. A. Teterin, I. A. Presnyakov, K. I. Maslakov, A. Yu. Teterin, and K. E. Ivanov, JETP Lett. 111, 422 (2020).

    Article  ADS  Google Scholar 

  16. I. Lindgren and J. Morrison, Atomic Many-Body Theory (Springer, Berlin, 1982).

    Book  Google Scholar 

  17. B. R. Judd, Operator Techniques in Atomic Spectroscopy (Princeton Univ. Press, Princeton, 1998).

    Book  Google Scholar 

  18. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Nauka, Moscow, 1963; Pergamon, Oxford, 1972).

  19. C. W. Nelson and G. F. Koster, Spectroscopic Coefficients for p n , d n , and f  n Configurations (MIT Press, Cambridge, MA, 1964).

    Google Scholar 

  20. D. L. Walters and C. P. Bhalla, Phys. Rev. A 3, 1919 (1971).

    Article  ADS  Google Scholar 

  21. M. H. Chen, F. P. Larkis, and B. Crasemann, At. Data Nucl. Data Tables 45, 1 (1990).

    Article  ADS  Google Scholar 

  22. J. C. Fuggle, A. F. Burr, L. M. Watson, D. F. Fabian, and W. Lang, J. Phys. F: Met. Phys. 4, 335 (1974).

    Article  ADS  Google Scholar 

  23. M. Ya. Amusia and L. V. Chernysheva, JETP Lett. 108, 435 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using equipment acquired with the support of the Program of Development of Moscow State University. We are grateful to Thomas Gouder, Rachel Eloirdi, and Alice Seibert (Directorate of Nuclear Safety and Security, Joint Research Centre, European Commission) for the fabrication of the ThO2 thin film sample and to Ian Farnan, Giulio Lampronti, and Aleksej Popel (Department of Earth Sciences, University of Cambridge) for placing the sample at our disposal and its characterization by scanning electron microscopy, X-ray diffraction analysis, and backscattered electron diffraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Yarzhemsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarzhemsky, V.G., Teterin, Y.A., Maslakov, K.I. et al. Many-Electron Effects in Th 5p and 5s X-Ray Photoelectron Spectra of ThO2. Jetp Lett. 114, 609–615 (2021). https://doi.org/10.1134/S0021364021220136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021220136

Navigation