Skip to main content
Log in

Anderson Localization in a Two-Dimensional Electron–Hole System

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Anderson localization is discovered in a highly disordered two-dimensional electron–hole system in a HgTe quantum well. The behavior of this localization is fundamentally different from that observed in widely studied two-dimensional one-component electron and hole systems. It is found that such system exhibits two-stage localization: two-dimensional holes are localized first, as particles with the effective mass almost an order of magnitude larger than that of electrons. Then, electrons become localized. It is also found that the system under study does not exhibit any metal–insulator transition: even at the electrical conductivity \(\sigma > {{e}^{2}}{\text{/}}h\), an insulator-like temperature dependence is observed. The results for the first time draw attention to the problem of the nature of Anderson localization in a two-dimensional electron–hole system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  2. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  3. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  4. S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 (1994).

    Article  ADS  Google Scholar 

  5. Y. Hanein, U. Meirav, D. Shahar, C. C. Li, D. C. Tsui, and H. Shtrikman, Phys. Rev. Lett. 80, 1288 (1998).

    Article  ADS  Google Scholar 

  6. E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).

    Article  ADS  Google Scholar 

  7. A. Punnoose and A. M. Finkel’stein, Science (Washington, DC, U. S.) 310, 289 (2005).

    Article  ADS  Google Scholar 

  8. A. A. Shashkin, Phys. Usp. 48, 129 (2005).

    Article  ADS  Google Scholar 

  9. V. F. Gantmakher and V. T. Dogopolov, Phys. Usp. 51, 3 (2008).

    Article  Google Scholar 

  10. V. T. Dolgopolov, Phys. Usp. 60, 731 (2017).

    Article  ADS  Google Scholar 

  11. V. T. Dolgopolov, Phys. Usp. 62, 633 (2019).

    Article  ADS  Google Scholar 

  12. V. M. Pudalov and M. E. Gershenzon, JETP Lett. 111, 225 (2020).

    Article  ADS  Google Scholar 

  13. G. M. Min’kov, O. E. Rut, A. A. Sherstobitov, S. A. Dvoretskii, and N. N. Mikhailov, JETP Lett. 110, 301 (2019).

    Article  ADS  Google Scholar 

  14. Z. D. Kvon, M. L. Savchenko, D. A. Kozlov, E. B. Olshanetsky, A. S. Yaroshevich, and N. N. Mikhailov, JETP Lett. 112, 161 (2020).

    Article  ADS  Google Scholar 

  15. N. N. Vasil’ev, Z. D. Kvon, N. N. Mikhailov, and S. D. Ganichev, JETP Lett. 113, 466 (2021).

    Article  ADS  Google Scholar 

  16. Z. D. Kvon, E. B. Olshanetsky, D. A. Kozlov, N. N. Mikhailov, and S. A. Dvoretskii, JETP Lett. 87, 502 (2008).

    Article  ADS  Google Scholar 

  17. E. B. Olshanetsky, Z. D. Kvon, M. V. Entin, L. I. Magarill, N. N. Mikhailov, and S. A. Dvoretskii, JETP Lett. 89, 290 (2009).

    Article  ADS  Google Scholar 

  18. E. B. Olshanetsky, Z. D. Kvon, N. N. Mikhailov, E. G. Novik, I. O. Parm, and S. A. Dvoretsky, Solid State Commun. 152, 265 (2012).

    Article  ADS  Google Scholar 

  19. E. Olshanetsky, Z. D. Kvon, Y. A. Gerasimenko, V. Prudkoglyad, V. M. Pudalov, N. N. Mikhailov, and S. Dvoretsky, JETP Lett. 98, 843 (2013).

    Article  ADS  Google Scholar 

  20. M. Knap, J. D. Sau, B. I. Halperin, and E. Demler, Phys. Rev. Lett. 113, 186801 (2014).

  21. V. A. Prudkoglyad, E. B. Olshanetsky, Z. D. Kvon, V. M. Pudalov, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 98, 155437 (2018).

  22. M. M. Mahmoodian and M. V. Entin, Phys. Rev. B 101, 125415 (2020).

  23. J. Gospodaric, A. Shuvaev, N. N. Mikhailov, Z. D. Kvon, E. G. Novik, and A. Pimenov, Phys. Rev. B (to be published).

  24. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskyi, J. Phys. C: Sol. St. Phys. 15, 7367 (1982).

    Article  ADS  Google Scholar 

  25. R. Davies, M. Pepper, and M. Kaveh, J. Phys. C: Sol. St. Phys. 16, L285 (1983).

    Article  ADS  Google Scholar 

  26. E. I. Zavritskaya and I. P. Zvyagin, JETP Lett. 41, 482 (1985).

    ADS  Google Scholar 

  27. S. I. Dorozhkin, E. B. Ol’shanetskii, Z. D. Kvon, and G. M. Gusev, JETP Lett. 45, 737 (1987).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2020-797 (13.1902.21.0024)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Olshanetsky.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvon, Z.D., Olshanetsky, E.B., Drofa, M.A. et al. Anderson Localization in a Two-Dimensional Electron–Hole System. Jetp Lett. 114, 341–346 (2021). https://doi.org/10.1134/S0021364021180090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021180090

Navigation