Skip to main content
Log in

Solution of the Schrödinger Equation on a Quantum Computer by the Zalka–Wiesner Method Including Quantum Noise

  • QUANTUM INFORMATICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The simulation of quantum systems on a quantum computer using the Zalka–Wiesner algorithm including quantum noise has been considered. The efficiency of developed methods and algorithms has been demonstrated by example of the solution of the time-dependent Schrödinger equation for a particle in the Pöschl–Teller potential. The developed analytical theory of the effect of quantum noise on the accuracy of simulation has been compared with Monte Carlo simulations. The accuracy of the solution of the Schrödinger equation for a many-electron system has been forecasted as a function of the number of electrons and for different levels of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Somma, G. Ortiz, E. Knill, and J. Gubernatis, Int. J. Quant. Inf. 1, 189 (2003).

    Article  Google Scholar 

  2. I. Kassal, J. D. Whitfield, A. Perdomo-Ortiz, M.‑H. Yung, and A. Aspuru-Guzik, Ann. Rev. Phys. Chem. 62, 185 (2011).

    Article  ADS  Google Scholar 

  3. J. Diaz, K. Jansen, J. D. P. Rolim, and U. Zwick, in Proceedings of the 9th International Workshop on A-pproximation for Combinatorial Optimization Problems (APPROX 2006) and 10th International Workshop on Randomization and Computation (RANDOM 2006), Barcelona, Spain, 2006.

  4. C. Zalka, Fortschr. Phys. 46, 877 (1998); arXiv: quant-ph/9603026.

    Article  MathSciNet  Google Scholar 

  5. S. Wiesner, arXiv: quant-ph/9603028 (1996).

  6. G. Benenti and G. Strini, Am. J. Phys. 76, 657 (2008).

    Article  ADS  Google Scholar 

  7. J. Abhijith, A. Adedoyin, J. Ambrosiano, et al., arXiv: 1804.03719 (2020).

  8. Y. Fan, Int. J. Quant. Inform. 10, 1250049 (2012).

  9. R. D. Somma, Quantum Info. Comput. 16, 1125 (2016).

    MathSciNet  Google Scholar 

  10. I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik, Proc. Natl. Acad. Sci. U. S. A. 105, 18681 (2008).

    Article  ADS  Google Scholar 

  11. Yu. I. Ozhigov, Mat. Model 24 (2), 109 (2012).

    MathSciNet  Google Scholar 

  12. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  13. A. S. Kholevo, Quantum Systems, Channels, Information (MTsMNO, Moscow, 2014; De Gryuter, Berlin, 2013).

  14. Yu. I. Bogdanov, A. Yu. Chernyavskiy, A. S. Holevo, V. F. Luckichev, and A. A. Orlikovsky, Proc. of SPIE 8700, 87001A (2013); arXiv: 1207.3313 [quant-ph].

  15. Yu. I. Bogdanov, A. Yu. Chernyavskiy, B. I. Bantysh, V. F. Lukichev, A. A. Orlikovsky, I. A. Semenihin, D. V. Fastovets, and A. S. Holevo, Proc. of SPIE 9440, 94401H (2014); arXiv: 1412.2293 [quant-ph].

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).

  17. S. Flugge, Practical Quantum Mechanics (Springer, Berlin, 1999), Vol. 1.

    MATH  Google Scholar 

  18. B. I. Bantysh, A. Yu. Chernyavskiy, and Yu. I. Bogdanov, JETP Lett. 111, 512 (2020).

    Article  ADS  Google Scholar 

  19. Yu. I. Bogdanov, Quantum Electron. 37, 1091 (2007).

    Article  ADS  Google Scholar 

  20. I. V. Zalivako, I. A. Semerikov, A. S. Borisenko, M. D. Aksenov, K. Yu. Khabarova, and N. N. Kolachevskii, JETP Lett. 114, 59 (2021).

    Article  ADS  Google Scholar 

  21. V. M. Porozova, L. V. Gerasimov, I. B. Bobrov, S. S. Straupe, S. P. Kulik, and D. V. Kupriyanov, Phys. Rev. A 99, 043406 (2019).

  22. L. V. Gerasimov, R. R. Yusupov, I. B. Bobrov, D. Shchepanovich, E. V. Kovlakov, S. S. Straupe, S. P. Kulik, and D. V. Kupriyanov, Phys. Rev. A 103, 062426 (2021).

  23. I. N. Moskalenko, I. S. Besedin, I. A. Tsitsilin, G. S. Mazhorin, N. N. Abramov, A. Grigor’ev, I. A. Rodionov, A. A. Dobronosova, D. O. Moskalev, A. A. Pishchimova, and A. V. Ustinov, JETP Lett. 110, 574 (2019).

    Article  ADS  Google Scholar 

  24. A. M. Dyugaev and P. D. Grigoriev, JETP Lett. 112, 101 (2020).

    Article  ADS  Google Scholar 

  25. A. G. Kudryavtsev, JETP Lett. 111, 126 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 0066-2019-0005 for the Institute of Physics and Technology, Russian Academy of Sciences) and by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS (project no. 20-1-1-34-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bogdanov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, Y.I., Bogdanova, N.A., Fastovets, D.V. et al. Solution of the Schrödinger Equation on a Quantum Computer by the Zalka–Wiesner Method Including Quantum Noise. Jetp Lett. 114, 354–361 (2021). https://doi.org/10.1134/S0021364021180065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021180065

Navigation