Skip to main content
Log in

Population Transfer in a Nitrogen-Vacancy Spin Qutrit via Shortcuts to Adiabaticity with Simplified Drivings

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Optimal control of quantum system is significant for information science and technology. Here, an efficient scheme is proposed for implementing fast population transfer in a spin qutrit of nitrogen-vacancy center via shortcuts to adiabaticity (STA) with simplified drivings. At two-photon resonance, a \(\Lambda \)-configuration interaction between the spin qutrit and driving fields can be obtained effectively. By the invariant-based STA, the reversible population transfer can be realized using the Rabi pulses with sine and cosine waveforms. Compared with the superadiabatic transitionless driving, the present pulses in our strategy become simplified technically, contributing to reduce the error effect of control parameter deviations. Moreover, the high-fidelity quantum operations can be performed with the accessible decoherence rates. The protocol could offer an optimized avenue towards the STA-based quantum control of spin qutrit experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, Nature (London, U.K.) 477, 574 (2011).

    Article  ADS  Google Scholar 

  2. L. Robledo, H. Bernien, T. van der Sar, and R. Hanson, New J. Phys. 13, 025013 (2011).

  3. M. W. Doherty, N. B. Mansonb, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, Phys. Rep. 528, 1 (2013).

    Article  ADS  Google Scholar 

  4. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, Science (Washington, DC, U. S.) 316, 1312 (2007).

    Article  Google Scholar 

  5. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, D. J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, and J. Wrachtrup, Nat. Phys. 6, 249 (2010).

    Article  Google Scholar 

  6. J.-W. Zhou, P.-F. Wang, F.-Z. Shi, P. Huang, X. Kong, X.-K. Xu, Q. Zhang, Z.-X. Wang, X. Rong, and J.‑F. Du, Front. Phys. 9, 587 (2014).

    Article  ADS  Google Scholar 

  7. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Ann. Rev. Phys. Chem. 65, 83 (2014).

    Article  ADS  Google Scholar 

  8. C. Zu, W.-B. Wang, L. He, W.-G. Zhang, C.-Y. Dai, F. Wang, and L.-M. Duan, Nature (London, U.K.) 514, 72 (2014).

    Article  ADS  Google Scholar 

  9. J. Zimmermann, P. London, Y. Yirmiyahu, F. Jelezko, A. Blank, and D. Gershoni, Phys. Rev. B 102, 245408 (2020).

  10. T. Wang and Y. Zhang, J. Opt. Soc. Am. B 37, 1372 (2020).

    Article  ADS  Google Scholar 

  11. J.-j. Cheng and L. Zhang, Phys. Rev. A 103, 032616 (2021).

  12. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Nature (London, U.K.) 466, 730 (2010).

    Article  ADS  Google Scholar 

  13. F. Ozaydin, C. Yesilyurt, S. Bugu, and M. Koashi, Phys. Rev. A 103, 052421 (2021).

  14. Q. Chen, W. L. Yang, and M. Feng, Phys. Rev. A 86, 022327 (2012).

  15. Z.-B. Feng, Phys. Rev. A 91, 032307 (2015).

  16. W.-J. Su, Z.-B. Yang, and H.-Z. Wu, Opt. Commun. 383, 101 (2017).

    Article  ADS  Google Scholar 

  17. S.-H. Wu, M. Amezcua, and H. Wang, Phys. Rev. A 99, 063812 (2019).

  18. H. Ali, A Basit, F. Badshah, M. Qurban, and G.-Q. Ge, Europhys. Lett. 127, 30007 (2019).

    Article  ADS  Google Scholar 

  19. F. Böhm, N. Nikolay, S. Neinert, C. E. Nebel, and O. Benson, Phys. Rev. B 104, 035201 (2021).

  20. P. Konzelmann, T. Rendler, V. Bergholm, A. Zappe, V. Pfannenstill, M. Garsi, F. Ziem, M. Niethammer, M. Widmann, S.-Y. Lee, P. Neumann, and J. Wrachtrup, New J. Phys. 20, 123013 (2018).

  21. R. S. Said and J. Twamley, Phys. Rev. A 80, 032303 (2019).

  22. J. Tian, T. Du, Y. Liu, H. Liu, F. Jin, R. S. Said, and J. Cai, Phys. Rev. A 100, 012110 (2019).

  23. Z.-Y. Zhao, Z.-B. Feng, M. Li, X.-J. Lu, and R.-Y. Yan, Quantum Inf. Process. 20, 66 (2021).

    Article  ADS  Google Scholar 

  24. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. Lett. 105, 123003 (2010).

  25. A. del Campo, Phys. Rev. Lett. 111, 100502 (2013).

  26. D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, Rev. Mod. Phys. 91, 045001 (2019).

  27. X.-K. Song, H. Zhang, Q. Ai, J. Qiu, and F.-G. Deng, New J. Phys. 18, 023001 (2016).

  28. B.-H. Huang, Y.-H. Kang, Y.-H. Chen, Q.-C. Wu, J. Song, and Y. Xia, Phys. Rev. A 96, 022314 (2017).

  29. H. L. Mortensen, J. J. W. H. Sorensen, K. Mølmer, and J. F. Sherson, New J. Phys. 20, 025009 (2018).

  30. B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. D. Awschalom, Nat. Phys. 13, 330 (2017).

    Article  Google Scholar 

  31. Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, Phys. Rev. Lett. 105, 140502 (2010).

  32. P.-B. Li, S.-Y. Gao, and F.-L. Li, Phys. Rev. A 83, 054306 (2011).

  33. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, Phys. Rev. A 84, 043849 (2011).

  34. H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).

    Article  ADS  Google Scholar 

  35. A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).

  36. Z.-B. Feng, X.-J. Lu, R.-Y. Yan, and Z.-Y. Zhao, Sci. Rep. 8, 9310 (2018).

    Article  ADS  Google Scholar 

  37. R.-Y. Yan and Z.-B. Feng, Adv. Quantum Technol. 3, 2000088 (2020).

  38. R.-Y. Yan and Z.-B. Feng, Quantum Sci. Technol. 5, 045001 (2020).

Download references

Funding

This work was supported by the Natural Science Foundation of Henan Province (grant no. 212300410388), the “316” Project Plan of Xuchang University, and the Research Project of Xuchang University (grant no. 2022YB047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-B. Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, RY., Feng, ZB. Population Transfer in a Nitrogen-Vacancy Spin Qutrit via Shortcuts to Adiabaticity with Simplified Drivings. Jetp Lett. 114, 314–320 (2021). https://doi.org/10.1134/S0021364021180028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021180028

Navigation