Skip to main content
Log in

Effect of Mechanical Stress on the Splitting of Spin Sublevels in 4H-SiC

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The effect of static mechanical strain on the splitting of spin sublevels of color centers based on spin 3/2 silicon vacancies in silicon carbide at room temperature has been shown. The deformed heterointerface of the AlN/4H-SiC structure has been studied. Stresses near the heterointerface have been determined using confocal Raman spectroscopy. The spin–strain coupling constants \(\Xi = ( - 0.1 \pm 0.25)\) GHz/strain and \(\Xi {\kern 1pt} ' = ( - 0.8 \pm 0.1)\) GHz/strain for the V2 center in 4H-SiC have been experimentally determined for the first time using the optically detected magnetic resonance method. The results obtained can be used to control spin states in SiC by means of the controlled piezoelectric strain in AlN and to estimate the fine-structure parameter D of spin centers using Raman scattering. Such an estimate makes it possible to forecast magnetometric parameters of nanosensors based on SiC nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. V. Astakhov and V. Dyakonov, in Defects in Advanced Electronic Materials and Novel Low Dimensional Structures, Ed. by J. Stehr, I. Buyanova, and W. Chen (Woodhead, 2018), p. 211.

    Google Scholar 

  2. S. Castelletto and A. Boretti, J. Phys. 2, 022001 (2020).

  3. N. T. Son, C. P. Anderson, A. Bourassa, K. C. Miao, C. Babin, M. Widmann, M. Niethammer, J. Ul Hassan, N. Morioka, I. G. Ivanov, F. Kaiser, J. Wrachtrup, and D. D. Awschalom, Appl. Phys. Lett. 116, 190501 (2020).

  4. D. M. Lukin, M. A. Guidry, and J. Vučković, PRX Quantum 1, 020102 (2020).

  5. S. A. Tarasenko, A. V. Poshakinskiy, D. Simin, V. A. Soltamov, E. N. Mokhov, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Phys. Status Solidi B 255, 1700258 (2018).

  6. P. G. Baranov, A. P. Bundakova, A. A. Soltamova, S. B. Orlinskii, I. V. Borovykh, R. Zondervan, R. Verberk, and J. Schmidt, Phys. Rev. B 83, 125203 (2011).

  7. P. G. Baranov, H. J. von Bardeleben, F. Jelezko, and J. Wrachtrup, Magnetic Resonance of Semiconductors and Their Nanostructures (Springer, Vienna, 2017).

    Book  Google Scholar 

  8. V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, Phys. Rev. Lett. 108, 226402 (2012).

  9. D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. Soltamova, P. Baranov, V. Ilyin, and G. V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012).

  10. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, Nat. Commun. 4, 1819 (2013).

    Article  ADS  Google Scholar 

  11. D. Simin, V. A. Soltamov, A. V. Poshakinskiy, A. N. Anisimov, R. A. Babunts, D. O. Tolmachev, E. N. Mokhov, M. Trupke, S. A. Tarasenko, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Phys. Rev. X 6, 031014 (2016).

  12. A. N. Anisimov, R. A. Babunts, I. D. Breev, V. A. Soltamov, E. N. Mokhov, and P. G. Baranov, JETP Lett. 112, 774 (2020).

    Article  ADS  Google Scholar 

  13. H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Nat. Phys. 10, 157 (2014).

    Article  Google Scholar 

  14. H. Kraus, V. A. Soltamov, F. Fuchs, D. Simin, A. Sperlich, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Sci. Rep. 4, 5303 (2015).

    Article  Google Scholar 

  15. A. N. Anisimov, V. A. Soltamov, I. D. Breev, M. M. Khalisov, R. A. Babunts, A. V. Ankudinov, and P. G. Baranov, JETP Lett. 108, 610 (2018).

    Article  ADS  Google Scholar 

  16. V. A. Soltamov, C. Kasper, A. V. Poshakinskiy, A. N. Anisimov, E. N. Mokhov, A. Sperlich, S. A. Tarasenko, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Nat. Commun. 10, 1678 (2019).

    Article  ADS  Google Scholar 

  17. A. N. Anisimov, D. Simin, V. A. Soltamov, S. P. Lebedev, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Sci. Rep. 6, 33301 (2016).

    Article  ADS  Google Scholar 

  18. M. Widmann, S.-Y. Lee, T. Rendler, et al., Nat. Mater. 14, 164 (2015).

    Article  ADS  Google Scholar 

  19. F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, Nat. Commun. 6, 7578 (2015).

    Article  ADS  Google Scholar 

  20. R. Nagy, M. Widmann, M. Niethammer, D. B. R. Da-sari, I. Gerhardt, Ö. O. Soykal, M. Radulaski, T. Ohshima, J. Vučković, N. T. Son, I. G. Ivanov, S. E. Economou, C. Bonato, S.-Y. Lee, and J. Wrachtrup, Phys. Rev. Appl. 9, 034022 (2018).

  21. R. Nagy, M. Niethammer, M. Widmann, Y.-C. Chen, et al., Nat. Commun. 10, 1954 (2019).

    Article  ADS  Google Scholar 

  22. N. Morioka, C. Babin, R. Nagy, et al., Nat. Commun. 11, 2516 (2020).

    Article  ADS  Google Scholar 

  23. D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, and J. Vučković, Nat. Photon. 14, 330 (2020).

    Article  ADS  Google Scholar 

  24. A. L. Falk, P. V. Klimov, B. B. Buckley, V. Ivády, I. A. Abrikosov, G. Calusine, W. F. Koehl, A. Gali, and D. D. Awschalom, Phys. Rev. Lett. 112, 187601 (2014).

  25. M. Rühl, L. Bergmann, M. Krieger, and H. B. Weber, Nano Lett. 20, 658 (2020).

    Article  ADS  Google Scholar 

  26. D. M. Lukin, A. D. White, R. Trivedi, et al., npj Quantum Inform. 6, 80 (2020).

  27. S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa, H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D. I. Schuster, G. Galli, and D. D. Awschalom, Nat. Phys. 15, 490 (2019).

    Article  Google Scholar 

  28. A. Hernández-Mínguez, A. V. Poshakinskiy, M. Hollenbach, P. V. Santos, and G. V. Astakhov, Phys. Rev. Lett. 125, 107702 (2020).

  29. I. D. Breev, K. V. Likhachev, V. V. Yakovleva, R. Hübner, G. V. Astakhov, P. G. Baranov, E. N. Mokhov, and A. N. Anisimov, J. Appl. Phys. 129, 055304 (2021).

  30. E. N. Mokhov and A. A. Wolfson, in Single Crystals of Electronic Materials: Growth and Properties, Ed. by R. Fornary (Woodhead, Elsevier, Amsterdam, 2018).

  31. C. Kasper, D. Klenkert, Z. Shang, D. Simin, A. Gottscholl, A. Sperlich, H. Kraus, C. Schneider, S. Zhou, M. Trupke, W. Kada, T. Ohshima, V. Dyakonov, and G. V. Astakhov, Phys. Rev. Appl. 13, 044054 (2020).

  32. N. Sugiyama, M. Yamada, Y. Urakami, M. Kobayashi, T. Masuda, K. Nishikawa, F. Hirose, and S. Onda, Mater. Res. Soc. Symp. Proc. 1693, 107 (2014).

    Article  Google Scholar 

  33. D. W. Feldman, J. H. Parker, J. W. J. Choyke, and L. Patrick, Phys. Rev. 170, 698 (1968).

    Article  ADS  Google Scholar 

  34. R. Sugie and T. Uchida, J. Appl. Phys. 122, 195703 (2017).

  35. K. Kamitani, M. Grimsditch, J. C. Nipko, C.-K. Loong, M. Okada, and I. Kimura, J. Appl. Phys. 82, 3152 (1997).

    Article  ADS  Google Scholar 

  36. A. V. Poshakinskiy and G. V. Astakhov, Phys. Rev. B 100, 094104 (2019).

  37. P. Udvarhelyi and A. Gali, Phys. Rev. Appl. 10, 054010 (2018).

  38. S. B. Orlinski, J. Schmidt, E. N. Mokhov, and P. G. Baranov, Phys. Rev. B 67, 125207 (2003).

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Poshakinskiy for stimulating discussion.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-52-76010. A.N. Anisimov acknowledges the support of the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (scholarship no. SP-2179.2021.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Anisimov.

Additional information

Translated by M. Shmatikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breev, I.D., Likhachev, K.V., Yakovleva, V.V. et al. Effect of Mechanical Stress on the Splitting of Spin Sublevels in 4H-SiC. Jetp Lett. 114, 274–278 (2021). https://doi.org/10.1134/S0021364021170057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021170057

Navigation