Skip to main content
Log in

Effect of Structural Inhomogeneity and Nonreciprocal Effects in the Interaction of Macroparticles on the Dynamic Properties of a Dusty Plasma Monolayer

  • PLASMA, HYDRO- AND GAS DYNAMICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The dynamic properties of a quasi-two-dimensional dusty plasma structure consisting of negatively charged dust particles have been studied. The interaction between the particles is described taking into account the asymmetry of the distribution of the electrostatic potential around them. Asymmetry is caused by the presence of an ion flow in the region of existence of a monolayer and leads to the violation of reciprocity of the effective interactions between particles and the violation of Newton’s third law for them. It has been demonstrated that the spatial distribution of the dynamic properties of the dusty plasma monolayer such as the kinetic energy of the particles, the amplitude of their thermal vibrations, and the nonideality parameter in the system are generally nonuniform. The central region of the ordered monolayer can be both more and less nonideal than the boundary region, depending on the parameters of the dusty plasma. This unique effect occurs because a hybrid mode can appear in the center of the monolayer without the melting of the system. The characters of inhomogeneity of the dynamic properties of the Yukawa and dusty plasma monolayers are significantly different. The results obtained allow a qualitatively new view on the dynamic properties of strongly nonideal dusty plasma systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994).

    Article  ADS  Google Scholar 

  2. H. Thomas and G. E. Morfill, Nature (London, U.K.) 379, 6868 (1996).

    Article  Google Scholar 

  3. A. V. Ivlev, U. Konopka, G. Morfill, and G. Joyce, Phys. Rev. E 68, 2 (2003).

    Google Scholar 

  4. C. L. Chan, W. Y. Woon, and I. Lin, Phys. Rev. Lett. 93, 220602 (2004).

    Article  ADS  Google Scholar 

  5. O. S. Vaulina, I. E. Drangevski, X. G. Adamovich, O. F. Petrov, and V. E. Fortov, Phys. Rev. Lett. 97, 19 (2006).

    Article  Google Scholar 

  6. S. O. Yurchenko, E. V. Yakovlev, L. Couëdel, N. P. Kryuchkov, A. M. Lipaev, V. N. Naumkin, A. Yu. Kislov, P. V. Ovcharov, K. I. Zaytsev, E. V. Vorob’ev, G. E. Morfill, and A. V. Ivlev, Phys. Rev. E 96, 043201 (2017).

    Article  ADS  Google Scholar 

  7. V. Nosenko, A. V. Ivlev, and G. E. Morfill, Phys. Rev. E 87, 043115 (2013).

    Article  ADS  Google Scholar 

  8. V. S. Nikolaev and A. V. Timofeev, Phys. Plasmas 28, 033704 (2021).

    Article  ADS  Google Scholar 

  9. S. I. Popel, G. E. Morfill, P. K. Shukla, and H. Thomas, J. Plasma Phys. 79, 6 (2013).

    Google Scholar 

  10. H. Totsuji, Phys. Plasmas 8, 1856 (2001).

    Article  ADS  Google Scholar 

  11. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).

    Article  ADS  Google Scholar 

  12. V. Nosenko, S. K. Zhdanov, and G. E. Morfill, Phys. Rev. Lett. 99, 025002 (2007).

    Article  ADS  Google Scholar 

  13. E. A. Lisin, O. F. Petrov, E. A. Sametov, O. S. Vaulina, K. B. Statsenko, M. M. Vasiliev, J. Carmona-Reyes, and T. W. Hyde, Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  14. A. V. Filippov, A. G. Zagorodny, A. I. Momot, A. F. Pal, and A. N. Starostin, J. Exp. Theor. Phys. 105, 831 (2007).

    Article  ADS  Google Scholar 

  15. S. V. Vladimirov, S. A. Maiorov, and O. Ishihara, Phys. Plasmas 10, 10 (2003).

    Google Scholar 

  16. V. V. Reshetniak, A. N. Starostin, and A. V. Filippov, J. Exp. Theor. Phys. 127, 1153 (2018).

    Article  ADS  Google Scholar 

  17. O. S. Vaulina, I. I. Lisina, and E. A. Lisin, J. Exp. Theor. Phys. 121, 717 (2015).

    Article  ADS  Google Scholar 

  18. V. S. Nikolaev and A. V. Timofeev, J. Phys.: Conf. Ser. 1147, 012109 (2019).

    Google Scholar 

  19. S. V. Vladimirov and M. Nambu, Phys. Rev. E 52, R2172 (1995).

    Article  ADS  Google Scholar 

  20. G. I. Sukhinin, A. V. Fedoseev, M. V. Salnikov, A. Rostom, M. M. Vasiliev, and O. F. Petrov, Phys. Rev. E 95, 6 (2017).

    Article  Google Scholar 

  21. V. A. Schweigert, I. V. Schweigert, A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 54, 4155 (1996).

    Article  ADS  Google Scholar 

  22. V. A. Shveigert and M. S. Obrekht, Tech. Phys. Lett. 21, 377 (1995).

    ADS  Google Scholar 

  23. S. K. Zhdanov, A. V. Ivlev, and G. E. Morfill, Phys. Plasmas 16, 083706 (2009).

    Article  ADS  Google Scholar 

  24. L. Couëdel, S. K. Zhdanov, A. V. Ivlev, V. Nosenko, H. M. Thomas, and G. E. Morfill, Phys. Plasmas 18, 083707 (2011).

    Article  ADS  Google Scholar 

  25. P. Ludwig, W. J. Miloch, H. Kählert, and M. Bönitz, New. J. Phys. 14, 053016 (2012).

    Article  ADS  Google Scholar 

  26. A. V. Ivlev, V. Nosenko, and T. B. Röcker, Contrib. Plasma Phys. 55, 35 (2015).

    Article  ADS  Google Scholar 

  27. A. V. Ivlev and G. Morfill, Phys. Rev. E 63, 016409 (2000).

    Article  ADS  Google Scholar 

  28. A. Melzer, V. A. Schweigert, and A. Piel, Phys. Rev. Lett. 83, 3194 (1999).

    Article  ADS  Google Scholar 

  29. A. A. Samarian, S. V. Vladimirov, and B. W. James, Phys. Plasmas 12, 022103 (2005).

    Article  ADS  Google Scholar 

  30. A. M. Ignatov, Plasma Phys. Rep. 46, 410 (2020).

    Article  ADS  Google Scholar 

  31. O. F. Petrov, M. M. Vasiliev, O. S. Vaulina, K. B. Stacenko, E. V. Vasilieva, E. A. Lisin, Y. Tun, and V. E. Fortov, Eur. Phys. Lett. 111, 4 (2015).

    Article  Google Scholar 

  32. A. Melzer, V. A. Schweigert, and I. V. Schweigert, Phys. Rev. E 54, R46 (1996).

    Article  ADS  Google Scholar 

  33. A. V. Ivlev and G. Morfill, Phys. Rev. E 63, 026412 (2001).

    Article  ADS  Google Scholar 

  34. V. V. Yaroshenko, A. V. Ivlev, and G. E. Morfill, Phys. Rev. E 71, 046405 (2005).

    Article  ADS  Google Scholar 

  35. I. H. Hutchinson and C. B. Haakonsen, Phys. Plasmas 20, 083701 (2013).

    Article  ADS  Google Scholar 

  36. S. Khrapak, A. Ivlev, G. Morfill, and H. Thomas, Phys. Rev. E 66, 046414 (2002).

    Article  ADS  Google Scholar 

  37. G. Joyce, M. Lampe, and G. Ganguli, IEEE Trans. Plasma Sci. 29, 238 (2001).

    Article  ADS  Google Scholar 

  38. V. V. Serikov, S. Kawamoto, and K. Nanbu, IEEE Trans. Plasma Sci. 84, 1389 (1999).

    Article  ADS  Google Scholar 

  39. T. P. Grozdanov and R. K. Janev, Phys. Rev. A 17, 880 (1998).

    Article  ADS  Google Scholar 

  40. A. V. Phelps, J. Phys. Chem. Ref. Data 20, 557 (1991).

    Article  ADS  Google Scholar 

  41. R. Kompaneets and G. E. Morfill, Phys. Rev. E 93, 063201 (2016).

    Article  ADS  Google Scholar 

  42. S. Sandar, Phys. Plasmas 1702, 07152 (2017).

    Google Scholar 

  43. V. Vahedi and M. Surendra, Comput. Phys. Commun. 87, 179 (1995).

    Article  ADS  Google Scholar 

  44. I. H. Hutchinson, Phys. Plasmas 18, 032111 (2011).

    Article  ADS  Google Scholar 

  45. A. M. Ignatov, Plasma Phys. Rep. 45, 850 (2019).

    Article  ADS  Google Scholar 

  46. T. B. Röcker, L. Couëdel, S. K. Zhdanov, V. Nosenko, A. V. Ivlev, H. M. Thomas, and G. E. Morfill, Eur. Phys. Lett. 106, 4 (2014).

    Article  Google Scholar 

  47. A. V. Timofeev, V. S. Nikolaev, and V. P. Semenov, J. Exp. Theor. Phys. 130, 153 (2020).

    Article  ADS  Google Scholar 

  48. V. S. Nikolaev and A. V. Timofeev, Phys. Plasmas 26, 073701 (2019).

    Article  ADS  Google Scholar 

  49. B. A. Klumov, JETP Lett. 110, 715 (2019).

    Article  ADS  Google Scholar 

  50. M. Hariprasad, P. Bandyopadhyay, G. Agora, and A. Sen, Phys. Plasmas 25, 123704 (2018).

    Article  ADS  Google Scholar 

  51. O. Vaulina and X. Koss, Phys. Rev. E 92, 042155 (2015).

    Article  ADS  Google Scholar 

  52. L. Couedel, V. Nosenko, S. Zhdanov, A. V. Ivlev, I. Laut, E. V. Yakovlev, N. P. Kryuchkov, P. V. Ovcharov, A. M. Lipaev, and S. O. Yurchenko, Phys. Usp. 62, 1000 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Nikolaev.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolotinskii, D.A., Nikolaev, V.S. & Timofeev, A.V. Effect of Structural Inhomogeneity and Nonreciprocal Effects in the Interaction of Macroparticles on the Dynamic Properties of a Dusty Plasma Monolayer. Jetp Lett. 113, 510–517 (2021). https://doi.org/10.1134/S0021364021080063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021080063

Navigation