Skip to main content
Log in

Effect of Electron Delocalization on the “Recoil-Free” Absorption of γ-Ray Photons in Fe1.75V0.25BO4 Warwickite

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Mössbauer spectroscopy is used to study the characteristic features of the crystal lattice dynamics in powdered single crystals of Fe1.75V0.25BO4 warwickite in the temperature range of 4.2–505 K. The Debye temperature (ΘD = 260 K) is determined from the temperature dependence of the probability of the Mössbauer effect in the thin absorber approximation. It is found that the electron delocalization related to the fast electronic transfer between neighboring Fe3+ and Fe2+ cations takes place in the temperature range of 260−505 K. As a result, iron cations exhibiting the mixed valence (Fe2.5+) arise. This process correlates with a change in the elastic properties of the lattice. Such correlation leads to a sharp decrease in the recoil-free absorption of γ‑ray photons by the crystal lattice in the range of 260–400 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. L. Mössbauer, Naturwissenschaften 45, 538 (1958).

    Article  ADS  Google Scholar 

  2. R. L. Mössbauer, Z. Phys. 151, 124 (1958).

    Article  ADS  Google Scholar 

  3. Č. Muzikář, V. Janovec, and V. Dvořák, Phys. Status Solidi B 3, K9 (1963).

    Article  ADS  Google Scholar 

  4. V. A. Bokov, V. P. Romanov, and V. V. Chekin, Sov. Phys. Solid State 7, 1521 (1965).

    Google Scholar 

  5. V. Chekin, V. Romanov, B. Verkin, and V. Bokov, JETP Lett. 2, 117 (1965).

    ADS  Google Scholar 

  6. T. Kobayashi and K. Fukumura, Nucl. Instrum. Methods Phys. Res. 180, 549 (1981).

    Article  ADS  Google Scholar 

  7. R. D. Ernst, D. R. Wilson, and R. Herber, J. Am. Chem. Soc. 106, 1646 (1984).

    Article  Google Scholar 

  8. M. Eibschüutz, S. Shtrikman, and D. Treves, Phys. Rev. 156, 562 (1967).

    Article  ADS  Google Scholar 

  9. V. Bhide and M. Multani, Phys. Rev. A 139, 1983 (1965).

    Article  ADS  Google Scholar 

  10. A. Jain, S. Shringi, and M. Sharma, Phys. Rev. B 2, 2756 (1970).

    Article  ADS  Google Scholar 

  11. B. Kolk, A. Bleloch, and D. Hall, Hyperfine Interact. 29, 1377 (1986).

    Article  ADS  Google Scholar 

  12. J. Fontcuberta, Phys. Status Solidi B 139, 379 (1987).

    Article  ADS  Google Scholar 

  13. K. Sharma, V. R. Reddy, A. Gupta, S. Kaushik, and V. Siruguri, J. Phys.: Condens. Matter 24, 376001 (2012).

    Google Scholar 

  14. M. Podgórna, J. Żukrowski, I. Jankowska-Sumara, A. Majchrowski, and K. Berent, Phys. Status Solidi B 254, 1700137 (2017).

    Article  ADS  Google Scholar 

  15. I. S. Lyubutin, S. Starchikov, A. G. Gavriliuk, I. Troyan, Y. A. Nikiforova, A. Ivanova, A. Chumakov, and R. Rüffer, JETP Lett. 105, 26 (2017).

    Article  ADS  Google Scholar 

  16. Y. V. Knyazev, A. Chumakov, A. Dubrovskiy, S. V. Semenov, S. S. Yakushkin, V. Kirillov, O. N. Martyanov, and D. A. Balaev, JETP Lett. 110, 613 (2019).

    Article  ADS  Google Scholar 

  17. V. Belyakov, JETP Lett. 67, 8 (1998).

    Article  ADS  Google Scholar 

  18. A. Chumakov, A. Barla, R. Rüffer, J. Metge, H. Grünsteudel, H. Grünsteudel, J. Plessel, H. Winkelmann, and M. Abd-Elmeguid, Phys. Rev. B 58, 254 (1998).

    Article  ADS  Google Scholar 

  19. R. Pradip, P. Piekarz, D. G. Merkel, J. Kalt, O. Waller, A. I. Chumakov, R. Rüffer, A. M. Oleś, K. Parlinski, T. Baumbach, and S. Stankov, Nanoscale 11, 10968 (2019).

    Article  Google Scholar 

  20. M. Dong, Q. Kuang, X. Zeng, L. Chen, J. Zhu, Q. Fan, Y. Dong, and Y. Zhao, J. Alloys Compd. 812, 152165 (2020).

    Article  Google Scholar 

  21. A. Balaev, O. Bayukov, A. Vasilev, D. Velikanov, N. Ivanova, N. Kazak, S. Ovchinnikov, M. Abd-Elmeguid, and V. Rudenko, J. Exp. Theor. Phys. 97, 989 (2003).

    Article  ADS  Google Scholar 

  22. A. Douvalis, V. Papaefthymiou, A. Moukarika, T. Bakas, and G. Kallias, J. Phys.: Condens. Matter 12, 177 (2000).

    ADS  Google Scholar 

  23. N. Suda, K. Kohn, and S. Nakamura, Ferroelectrics 286, 155 (2003).

    Article  Google Scholar 

  24. M. Sánchez-Andújar, J. Mira, B. Rivas-Murias, S. Yáñez-Vilar, N. Biskup, J. Rivas, and M. A. Señarís-Rodríguez, IEEE Trans. Magn. 44, 2989 (2008).

    Article  ADS  Google Scholar 

  25. M. Angst, P. Khalifah, R. Hermann, H. Xiang, M.‑H. Whangbo, V. Varadarajan, J. W. Brill, B. C. Sales, and D. Mandrus, Phys. Rev. Lett. 99, 086403 (2007).

    Article  ADS  Google Scholar 

  26. S. Bland, M. Angst, S. Adiga, V. Scagnoli, R. Johnson, J. Herrero-Martin, and P. Hatton, Phys. Rev. B 82, 115110 (2010).

    Article  ADS  Google Scholar 

  27. H. Yang, H. Tian, Y. Song, Y. Qin, Y. Zhao, C. Ma, and J. Li, Phys. Rev. Lett. 106, 016406 (2011).

    Article  ADS  Google Scholar 

  28. J. van den Brink and D. I. Khomskii, J. Phys.: Condens. Matter 20, 434217 (2008).

    Google Scholar 

  29. O. Dolomanov, L. Bourhis, R. Gildea, J. Howard, and H. Puschmann, J. Appl. Crystallogr. 42, 339 (2009).

    Article  Google Scholar 

  30. G. M. Sheldrick, Acta Crystallogr. A 71, 3 (2015).

    Article  Google Scholar 

  31. I. Lyubutin, N. Y. Korotkov, K. Frolov, N. Kazak, M. Platunov, Y. V. Knyazev, L. Bezmaternykh, S. Ovchinnikov, A. Arauzo, and J. Bartolomé, J. Alloys Compd. 642, 204 (2015).

    Article  Google Scholar 

  32. A. Douvalis, V. Papaefthymiou, A. Moukarika, and T. Bakas, Hyperfine Interact. 126, 319 (2000).

    Article  ADS  Google Scholar 

  33. G. Abramova, Y. Knyazev, O. Bayukov, and S. Kubrin, Phys. Solid State 63, 68 (2021).

    Article  ADS  Google Scholar 

  34. A. Akrap, M. Angst, P. Khalifah, D. Mandrus, B. C. Sales, and L. Forró, Phys. Rev. B 82, 165106 (2010).

    Article  ADS  Google Scholar 

  35. Y. V. Knyazev, N. Kazak, M. Platunov, N. Ivanova, L. Bezmaternykh, A. Arauzo, J. Bartolomé, and S. Ovchinnikov, J. Alloys Compd. 642, 232 (2015).

    Article  Google Scholar 

  36. E. Verwey, Nature (London, U.K.) 144, 327 (1939).

    Article  ADS  Google Scholar 

  37. R. H. Herber and D. Johnson, Inorg. Chem. 18, 2786 (1979).

    Article  Google Scholar 

  38. R. Giovanelli and A. Orefice, Phys. Lett. A 298, 279 (2002).

    Article  ADS  Google Scholar 

  39. M. Continentino, A. Pedreira, R. Guimaraes, M. Mir, J. Fernandes, R. Freitas, and L. Ghivelder, Phys. Rev. B 64, 014406 (2001).

    Article  ADS  Google Scholar 

  40. N. V. Kazak, M. S. Platunov, Y. V. Knyazev, N. B. Ivanova, O. A. Bayukov, A. D. Vasiliev, L. N. Bezmaternykh, V. I. Nizhankovskii, S. Y. Gavrilkin, K. V. Lamonova, and S. G. Ovchinnikov, J. Magn. Magn. Mater. 393, 316 (2015).

    Article  ADS  Google Scholar 

  41. K. V. Frolov, I. S. Lyubutin, D. A. Chareev, and M. Abdel-Hafiez, JETP Lett. 110, 562 (2019).

    Article  ADS  Google Scholar 

  42. O. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (project no. MK-2339.2020.2) and by the Russian Foundation for Basic Research (project no. 20-02-00559-a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Knyazev or N. V. Kazak.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, Y.V., Bayukov, O.A., Shustin, M.S. et al. Effect of Electron Delocalization on the “Recoil-Free” Absorption of γ-Ray Photons in Fe1.75V0.25BO4 Warwickite. Jetp Lett. 113, 279–284 (2021). https://doi.org/10.1134/S002136402104010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402104010X

Navigation