Skip to main content
Log in

Phase Transition in Three-Dimensional Noncollinear Magnetic Systems with Additional Two-Fold Degeneracy

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Using Monte Carlo simulations, we investigate the critical behavior in a three-dimensional frustrated helimagnet with an additional two-fold degeneracy, realized in a stacked-J1-J2-J3 model on a cubic lattice. For the case of Heisenberg spins (N = 3), a first-order transition is found. Using the renormalization group approach, the same result is also found for an arbitrary value N of component number of the classical spin. The corresponding Ginzburg-Landau functional is obtained from the lattice model and analyzed in lower orders of the 4 - ε expansion. We argue that the qualitative result don’t change if the higher orders of the expansion are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Villain, J. Phys. Chem. Solids 11, 303 (1959).

    Article  ADS  Google Scholar 

  2. A. Yoshimori, J. Phys. Soc. Jpn. 14, 508 (1959).

    Article  Google Scholar 

  3. T. A. Kaplan, Phys. Rev. 116, 888 (1959).

    Article  ADS  Google Scholar 

  4. J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Phys. 41, 1263 (1980).

    Article  Google Scholar 

  5. E. F. Shender, Sov. Phys. JETP 56, 178 (1982).

    Google Scholar 

  6. C. L. Henley, Phys. Rev. Lett. 62, 2056 (1989).

    Article  ADS  Google Scholar 

  7. R. J. Elliott, Phys. Rev. 124, 346 (1961).

    Article  ADS  Google Scholar 

  8. D. N. Aristov, Phys. Rev. B 55, 8064 (1997).

    Article  ADS  Google Scholar 

  9. A. O. Sorokin, J. Exp. Theor. Phys. 118, 417 (2014).

    Article  ADS  Google Scholar 

  10. A. O. Sorokin and A. V. Syromyatnikov, JETP Lett. 96, 410 (2012).

    Article  ADS  Google Scholar 

  11. A. O. Sorokin, Phys. Rev. B 95, 094408 (2017).

    Article  ADS  Google Scholar 

  12. A. O. Sorokin, J. Magn. Magn. Mater. 479, 32 (2019).

    Article  ADS  Google Scholar 

  13. M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, 10801 (1989).

    Article  ADS  Google Scholar 

  14. A. Moreo, E. Dagotto, T. Jolicoeur, and J. Riera, Phys. Rev. B 42, 6283 (1990).

    Article  ADS  Google Scholar 

  15. A. Chubukov, Phys. Rev. B 44, 392 (1991).

    Article  ADS  Google Scholar 

  16. B. Delamotte, D. Mouhanna, and M. Tissier, Phys. Rev. B 69, 134413 (2004).

    Article  ADS  Google Scholar 

  17. A. O. Sorokin and A. V. Syromyatnikov, J. Exp. Theor. Phys. 112, 1004 (2011).

    Article  ADS  Google Scholar 

  18. A. O. Sorokin and A. V. Syromyatnikov, J. Exp. Theor. Phys. 113, 673 (2011).

    Article  ADS  Google Scholar 

  19. D. Schmalfuss, R. Darradi, J. Richter, J. Schulenburg, and D. Ihle, Phys. Rev. Lett. 97, 157201 (2006).

    Article  ADS  Google Scholar 

  20. A. O. Sorokin, Phys. Lett. A 382, 3455 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. O. Sorokin, JETP Lett. 109, 419 (2019).

    Article  ADS  Google Scholar 

  22. A. O. Sorokin, Theor. Math. Phys. 200, 1193 (2019).

    Article  Google Scholar 

  23. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 106, 86 (2017).

    Article  ADS  Google Scholar 

  24. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 109, 589 (2019).

    Article  ADS  Google Scholar 

  25. F. R. Brown and T. J. Woch, Phys. Rev. Lett. 58, 2394 (1987).

    Article  ADS  Google Scholar 

  26. M. Creutz, Phys. Rev. D 36, 515 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  27. J. N. Reimers, J. E. Greedan, and M. Björgvinsson, Phys. Rev. B 45, 7295 (1992).

    Article  ADS  Google Scholar 

  28. H. Kunz and G. Zumbach, J. Phys. A: Math. Gen. 26, 3121 (1993).

    Article  ADS  Google Scholar 

  29. H. T. Diep and D. Loison, J. Appl. Phys. 76, 6350 (1994).

    Article  ADS  Google Scholar 

  30. D. Loison, Eur. Phys. J. B 15, 517 (2000).

    Article  ADS  Google Scholar 

  31. A. Pelissetto, P. Rossi, and E. Vicari, Nucl. Phys. B 607, 605 (2001).

    Article  ADS  Google Scholar 

  32. P. Calabrese and P. Parruccini, Nucl. Phys. B 679, 568 (2004).

    Article  ADS  Google Scholar 

  33. M. V. Kompaniets, A. Kudlis, and A. I. Sokolov, arXiv:1911.01091 [cond-mat.stat-mech].

  34. H. Kawamura, J. Phys. Soc. Jpn. 59, 2305 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  35. L. Saul, Phys. Rev. B 46, 13847 (1992).

    Article  ADS  Google Scholar 

  36. E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev. B 10, 892 (1974).

    Article  ADS  Google Scholar 

  37. Yu. M. Pis’mak, A. Weber, and F. J. Wegner, J. Phys. A: Math. Theor. 42, 095003 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to O.I. Utesov and A.V. Syromyatnikov for stimulating discussions.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-02-00706) and by the Foundation for the Advancement of Theoretical Physics BASIS (project no. 19-1-3-38-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Sorokin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, A.O. Phase Transition in Three-Dimensional Noncollinear Magnetic Systems with Additional Two-Fold Degeneracy. Jetp Lett. 111, 41–45 (2020). https://doi.org/10.1134/S0021364020010130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020010130

Navigation