Skip to main content
Log in

Onset of the Jet Quenching Phenomenon

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The aim of this study is to set a baseline for the jet quenching measurements of the Quark Gluon Plasma formed in the large system size Nucleus-Nucleus (A-A) at top central collisions, via studying simulated small system size, Nucleon-Nucleon (N-N) collisions. The proton-proton (p-p) collisions were simulated using PYTHIA, at center of mass energies \(\sqrt {{s_{NN}}} = 200\;{\rm{GeV}}\) and \(\sqrt {{s_{NN}}} = 13\;{\rm{TeV}}\) corresponding to the available energies at the current collider experiments; the Relativistic Heavy Ion Collider, and the Large Hadron Collider. At both energies, the two-particle azimuthal correlation functions have been considered, and the yield associated with the high transverse momentum (pT) particles were extracted at its near-side (Δϕ ≈ 0) and away-side (Δϕ ≈ π) at mid pseudo rapidity (|η| ≤ 2). The ratio between the near-side yields in the high multiplicity events to these of the low multiplicity events (INHL), as well as, the ratio of the away-side yields (INHL) were calculated at both energies as a function of the hadron fractional energy zT of the high-pT particle. At both energies, the values of INHL and IAHL were less than unity, and of trivial dependence on zT. The values of IAHL are always less than these of INHL at the same multiplicity and energy, and both quantities show a pattern of systematic decreases with the multiplicity. Such multiplicity dependence cannot be used neither to exclude the jet quenching nor to prove it in the high multiplicity events in p-p collisions, as the suppressions have been found at both sides, near and away of the high-pT particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Adams, M. Aggarwal, Z. Ahammed, et al. (STAR Collab.), Nucl. Phys. A 757, 102 (2005).

    Article  ADS  Google Scholar 

  2. K. Adcox, S. Adler, S. Afanasiev, et al. (PHENIX Collab.), Nucl. Phys. A 757, 184 (2005).

    Article  ADS  Google Scholar 

  3. I. Arsene, I. Bearden, D. Beavis, et al. (BRAHMS Collab.), Nucl. Phys. A 757, 1 (2005).

    Article  ADS  Google Scholar 

  4. B. Back, M. Baker, M. Ballintijn, et al. (PHOBOS Collab.), Nucl. Phys. A 757, 28 (2005).

    Article  ADS  Google Scholar 

  5. S. Chatrchyan, V. Khachatryan, A. Sirunyan, et al. (CMS Collab.), Eur. Phys. J. C 72, 1945 (2012).

    Article  ADS  Google Scholar 

  6. S. Adler, S. Afanasiev, C. Aidala, et al. (PHENIX Collab.), Phys. Rev. Lett. 94, 232301 (2005).

    Article  ADS  Google Scholar 

  7. S. Chatrchyan, V. Khachatryan, A. Sirunyan, et al. (CMS Collab.), Phys. Lett. B 710, 256 (2012).

    Article  ADS  Google Scholar 

  8. S. Chatrchyan, V. Khachatryan, A. Sirunyan, et al. (CMS Collab.), Phys. Lett. B 715, 66 (2012).

    Article  ADS  Google Scholar 

  9. S. Chatrchyan, V. Khachatryan, A. Sirunyan, et al. (CMS Collab.), Phys. Rev. Lett. 106, 212301 (2011).

    Article  ADS  Google Scholar 

  10. S. Chatrchyan, V. Khachatryan, A. Sirunyan, et al. (CMS Collab.), J. High Energy Phys. 05, 063 (2012).

    Article  ADS  Google Scholar 

  11. B. Abelev, J. Adam, D. Adamovä, et al. (ALICE Collab.), J. High Energy Phys. 09, 112 (2012).

    Article  ADS  Google Scholar 

  12. B. Abelev, M. Aggarwal, Z. Ahammed, et al. (STAR Collab.), Phys. Rev. C 79, 034909 (2009).

    Article  ADS  Google Scholar 

  13. B. Alver, B. Back, M. Baker, et al. (PHOBOS Collab.), Phys. Rev. C 75, 054913 (2007).

    Article  ADS  Google Scholar 

  14. V. Khachatryan, A. Sirunyan, A. Tumasyan, et al. (CMS Collab.), J. High Energy Phys. 09, 091 (2010).

    Article  ADS  Google Scholar 

  15. J. Adam, D. Adamovä, M. Aggarwal, et al. (ALICE Collab.), Nat. Phys. 13, 535 (2017).

    Article  Google Scholar 

  16. Multiple Parton Interactions at the LHC, Proceedings of the 1st Workshop, Perugia, Italy, October 27–31, 2008, DESY-PROC-2009-06.

  17. http://home.thep.lu.se/?torbjorn/Pythia.html.

  18. J. D. Bjorken, FERMILAB-PUB-82-59-THY (1982); erratum (unpublished). https://lss.fnal.gov/archive/1982/pub/Pub-82-059-T.pdf.

  19. J. Adams, C. Adler, M. Aggarwal, et al. (STAR Collab.), Phys. Rev. Lett. 91, 072304 (2003).

    Article  ADS  Google Scholar 

  20. J. Adams, M. Aggarwal, Z. Ahammed, et al. (STAR Collab.), Phys. Rev. Lett. 97, 162301 (2006).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the American University in Cairo.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. T. AlFiky, O. Elsherif or A. M. Hamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlFiky, M.T., Elsherif, O. & Hamed, A.M. Onset of the Jet Quenching Phenomenon. Jetp Lett. 111, 8–17 (2020). https://doi.org/10.1134/S0021364020010014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020010014

Navigation