Skip to main content
Log in

Nonlinear Transformations of the Kinetic and Magnetic Energies in Rotating Magnetohydrodynamic Turbulent Flows

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Time-periodic imbalances in the kinetic and magnetic energies at the conservation of the total energy have been found for three-dimensional homogeneous magnetohydrodynamic turbulence in the presence of rotation and an external magnetic field. It has been shown that these imbalances are caused by the collisions of Alfvén wave packets that arise because of the external magnetic field. It has been shown that no periodic imbalances of the kinetic and magnetic energies occur in the system at certain threshold values of the angular velocity of rotation and external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Zelenyi, A. M. Bykov, Y. A. Uvarov, and A. V. Artemyev, J. Plasma Phys. 81, 395810401 (2015).

    Article  Google Scholar 

  2. A. Petrosyan, A. Balogh, M. L. Goldstein, J. Léorat, E. Marsch, K. Petrovay, B. Roberts, R. von Steiger, and J. C. Vial, Spac. Sci. Rev. 156, 135 (2010).

    Article  ADS  Google Scholar 

  3. A. A. Chernyshov, K. V. Karelsky, and A. S. Petrosyan, Phys. Usp. 57, 421 (2014).

    Article  ADS  Google Scholar 

  4. V. I. Il’gisonis, Classical Problems in the Physics of Hot Plasma. Course of Lectures (Mosk. Energet. Inst., Moscow, 2015) [in Russian].

    Google Scholar 

  5. C. W. Horton, Jr., Turbulent Transport in Magnetized Plasmas (World Scientific, Singapore, 2017).

    Book  Google Scholar 

  6. A. I. Morozov and L. S. Solov’ev, Vopr. Teor. Plazmy, No. 2, 3 (1963).

    Google Scholar 

  7. D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  8. W.-C. Muller and D. Biskamp, The Evolving Phenomenological View on Magnetohydrodynamic Turbulence, Turbulence and Magnetic Fields in Astrophysics (Springer, Berlin, Heidelberg, 2003).

    Google Scholar 

  9. V. P. Pastukhov and N. V. Chudin, JET. Lett. 90, 651 (2009).

    Article  ADS  Google Scholar 

  10. V. P. Pastukhov and N. V. Chudin, JET. Lett. 82, 356 (2005).

    Article  ADS  Google Scholar 

  11. V. P. Pastukhov and N. V. Chudin, Plasm. Phys. Rep. 27, 907 (2001).

    Article  ADS  Google Scholar 

  12. P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).

    Article  ADS  Google Scholar 

  13. P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasm. Phys. Control. Fusion 47, R35 (2005).

    Article  Google Scholar 

  14. S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1 (1998).

    Article  ADS  Google Scholar 

  15. P. J. Armitage, Ann. Rev. Astron. Astrophys. 49, 195 (2011).

    Article  ADS  Google Scholar 

  16. Accretion Processes in Astrophysics, Ed. by N. I. Shakura (Fizmatlit, Moscow, 2016) [in Russian].

  17. M. S. Miesch, Livin. Rev. Solar Phys. 2, 1 (2005).

    Article  ADS  Google Scholar 

  18. S. M. Tobias, P. H. Diamond, and D. W. Hughes, Astrophys. J. 667, 113 (2007).

    Article  ADS  Google Scholar 

  19. T. A. Zinyakov and A. S. Petrosyan, JET. Lett. 108, 85 (2018).

    Article  ADS  Google Scholar 

  20. J. V. Shebalin, Geophys. Astrophys. Fluid Dyn. 107, 411 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  21. J. V. Shebalin, Discret. Cont. Dyn. Syst. B 5, 153 (2005).

    Article  MathSciNet  Google Scholar 

  22. B. Favier, F. S. Godeferd, and C. Cambon, Geophys. Astrophys. Fluid Dyn. 106, 89 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 19 (1941).

    ADS  Google Scholar 

  24. R. S. Iroshnikov, Sov. Astron. 7, 566 (1963).

    ADS  MathSciNet  Google Scholar 

  25. R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Baklouti, A. Khili, A. Salhi, F. Godeferd, C. Cambon, and T. Lehner, J. Turbulence 20, 263 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  27. H. K. Moffatt, Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, Cambridge, 1978).

    Google Scholar 

  28. E. N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (Oxford Univ. Press, Oxford, 1979).

    Google Scholar 

  29. O. Pezzi, T. N. Parashar, S. Servidio, F. Valentini, C. L. Vásconez, Y. Yang, F. Malara, W. H. Matthaeus, and P. Veltri, J. Plasma Phys. 83, 905830105 (2017).

    Google Scholar 

  30. O. Pezzi, T. N. Parashar, S. Servidio, F. Valentini, C. L. Vásconez, Y. Yang, F. Malara, W. H. Matthaeus, and P. Veltri, Astrophys. J. 834, 166 (2017).

    Article  ADS  Google Scholar 

  31. C. S. Ng and A. Bhattacharjee, Astrophys. J. 465, 845 (1996).

    Article  ADS  Google Scholar 

  32. G. G. Howes and K. D. Nielson, Phys. Plasmas 20, 072302 (2013).

    Article  ADS  Google Scholar 

  33. G. G. Howes, K. D. Nielson, and W. Dorland, Phys. Plasmas 20, 072303 (2013).

    Article  ADS  Google Scholar 

  34. G. G. Howes, K. D. Nielson, D. J. Drake, J. W. R. Schroeder, F. Skiff, C. A. Kletzing, and T. A. Carter, Phys. Plasmas 20, 072304 (2013).

    Article  ADS  Google Scholar 

  35. D. J. Drake, J. W. R. Schroeder, G. G. Howes, C. A. Kletzing, F. Skiff, T. A. Carter, and D. W. Auerbach, Phys. Plasmas 20, 072901 (2013).

    Article  ADS  Google Scholar 

  36. K. Miki and S. Menon, Phys. Plasmas 15, 7 (2008).

    Google Scholar 

  37. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  38. G. I. Taylor and A. E. Green, Proc. R. Soc. London, Ser. A 158 (895), 499 (1937).

    Article  ADS  Google Scholar 

  39. M. E. Brachet, Flui. Dyn. Res. 8, 1 (1991).

    Article  ADS  Google Scholar 

  40. A. Pouquet, E. Lee, M.-E. Brachet, P. Mininni, and D. Rosenberg, Geophys. Astrophys. Fluid Dyn. 104, 115 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “Basis,” by the Presidium of the Russian Academy of Sciences (project no. KP19-270 “Problems of the Origin and Evolution of the Universe Using Ground-Based Observations and Space Research”), and by the Russian Foundation for Basic Research (project no. 19-02-00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Sirazov.

Additional information

Russian Text The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 5, pp. 314–322.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirazov, R.A., Petrosyan, A.S. Nonlinear Transformations of the Kinetic and Magnetic Energies in Rotating Magnetohydrodynamic Turbulent Flows. Jetp Lett. 110, 329–335 (2019). https://doi.org/10.1134/S0021364019170119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019170119

Navigation