Skip to main content
Log in

Comparative Study on the Interatomic Force Constants and Elastic Properties of Zinc-Blende AlN, AlP, and AlAs

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The lattice constants, interatomic force constants and elastic constants of zinc-blende AlN, AlP and AlAs are calculated by ab initio pseudopotential plane wave method. The calculated lattice constants are underestimated owing to local density approximation itself and thermal expansion effect. Based on the density functional perturbation theory, the elastic properties of these materials are studied. The calculated values are affected by lattice constant, selection of pseudopotential and exchange-correlation energy. Based on the calculated elastic constants, Young's modulus diagrams on (101) sides of these materials are drawn, which provides an important reference for the future research on the mechanics of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mujica, A. Rubio, A. Munoz, and R. J. Needs, Rev. Mod. Phys. 75, 863 (2003).

    Article  ADS  Google Scholar 

  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, and T. Matsushita, Jpn. J. Appl. Phys. 35, L74 (1996).

    Article  Google Scholar 

  3. K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 4777 (2004).

    Article  ADS  Google Scholar 

  4. W. A. Brantley, J. Appl. Phys. 44, 534 (1973).

    Article  ADS  Google Scholar 

  5. A. A. Yamaguchi, Y. Mochizuki, C. Sasaoka, A. Kimura, M. Nido, and A. Usui, Appl. Phys. Lett. 71, 374 (1997).

    Article  ADS  Google Scholar 

  6. P. Rodriguez and A. Munoz, Semicond. Sci. Technol. 7, 1437 (1992).

    Article  ADS  Google Scholar 

  7. N. Chetty, A. Muoz, and R. M. Martin, Phys. Rev. B 40, 11934 (1989).

    Article  ADS  Google Scholar 

  8. Y. Ciftci, K. Colakoglu, and E. Deligoz, Phys. Status Solidi C 4, 234 (2007).

    Article  ADS  Google Scholar 

  9. A. F. Wright, J. Appl. Phys. 82, 2833 (1997).

    Article  ADS  Google Scholar 

  10. I. Petrov, E. Mojab, R. C. Powell, J. E. Green, L. Hultman, and J. E. Sundgren, Appl. Phys. Lett. 60, 2491 (1992).

    Article  ADS  Google Scholar 

  11. G. Lucovsky, R. M. Martin, and E. Burstein, Phys. Rev. B 4, 1367 (1971).

    Article  ADS  Google Scholar 

  12. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  13. V. V. Sahni, K. Bohnen, and M. K. Harbola, Phys. Rev. A 3, 71895 (1988).

    Google Scholar 

  14. X. Gonze, J. M. Beuken, R. Caracas, et al., Comput. Mater. Sci. 25, 478 (2002).

    Article  Google Scholar 

  15. A. D. Corso, F. Mauri, and A. Rubio, Phys. Rev. B 53, 15638 (1996).

    Article  ADS  Google Scholar 

  16. P. Giannozzi and S. de Gironcoli, Phys. Rev. B 43, 7231 (1990).

    Article  ADS  Google Scholar 

  17. O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3780 (1985).

    Article  ADS  Google Scholar 

  18. J. F. Nye, Physical Properties of Crystals (Oxford Univ. Press, Oxford, 1957).

    MATH  Google Scholar 

  19. K. Karch and F. Bechstedt, Phys. Rev. B 56, 7404 (1997).

    Article  ADS  Google Scholar 

  20. K. Kim, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B 53, 10310 (1996).

    Article  Google Scholar 

  21. E. Ruiz, S. Alvarez, and P. Alemany, Phys. Rev. B 49, 7115 (1994).

    Article  ADS  Google Scholar 

  22. D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 71, 035117 (2005).

    Article  ADS  Google Scholar 

  23. M. J. Herrera-Cabrera, P. Rodriguez-Hernandez, and A. Munoz, Phys. Status Solidi B 223, 411 (2001).

    Article  ADS  Google Scholar 

  24. A. Bouhenadou, R. Khenata, and M. Kharoubi, Comput. Mater. Sci. 45, 474 (2009).

    Article  Google Scholar 

  25. B. Landolt, Semicondutors: Physics of Group IV Elementsand III-V Compounds (Springer, Berlin, 1992), Vol. III/17a.

  26. M. Krieger and H. Sigg, Appl. Phys. Lett. 66, 682 (1995).

    Article  ADS  Google Scholar 

  27. C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).

    Article  ADS  Google Scholar 

  28. J. F. Nye, Physical Properties of Crystals. Their Representation by Tensors and Matrices, 2nd ed. (Oxford, Clarendon, 1985).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tan, Q. & Zeng, X. Comparative Study on the Interatomic Force Constants and Elastic Properties of Zinc-Blende AlN, AlP, and AlAs. Jetp Lett. 109, 652–656 (2019). https://doi.org/10.1134/S0021364019100035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019100035

Navigation