Skip to main content
Log in

Low-Temperature P–T Phase Diagram of the (Mg, Fe)SiO3 Perovskite

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electron spin states of iron in minerals of the Earth’s mantle at high pressures mostly determine the physicochemical properties of deep layers of the Earth and are of great interest not only for geophysics but also for fundamental physics of strongly correlated electron systems. In this work, using Raman and synchrotron Mössbauer nuclear forward scattering (NFS) spectroscopies, iron-containing magnesium–silicate perovskite (Mg, Fe)SiO3 (10% Fe) has been studied in the cryogenic temperature range of 35–300 K and at high pressures up to 48 GPa, which are created in diamond anvil cells. The analysis of NFS spectra has indicated that iron ions are in a nonmagnetic (para- or diamagnetic) state in the entire region of temperatures and pressures and the electronic properties can be controlled by means of the quadrupole splitting parameter. It has been found that an increase in the pressure and a decrease in the temperature are accompanied by a significant increase in the parameter Δ from 2 mm/s to ~4 mm/s, which indicates that the electronic state of Fe2+ ions changes. The maximum Δ value has been observed at P > 20 GPa, but the pressure behavior of a transition strongly depends on the temperature. Possible mechanisms of the transition have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, Science (Washington, DC, U. S.) 304, 855 (2004).

    Article  ADS  Google Scholar 

  2. D. U. Pushcharovskii and Yu. M. Pushcharovskii, Soros. Obrazov. Zh. 11, 111 (1998).

    Google Scholar 

  3. H. Horiuchi, E. Ito, and D. J. Weidner, Am. Mineralog. 72, 357360 (1987).

    Google Scholar 

  4. R. J. Kirkpatrick, D. Howell, B. L. Phillips, X. D. Cong, E. Ito, and A. Navrotsky, Am. Mineralog. 76, 673 (1991).

    Google Scholar 

  5. A. R. Oganov and S. Ono, Nature (London, U.K.) 430, 445 (2004).

    Article  ADS  Google Scholar 

  6. R. D. van der Hilst, M. V. de Hoop, P. Wang, S.-H. Shim, P. Ma, and L. Tenorio, Science (Washington, DC, U. S.) 315, 1813 (2007).

    Article  ADS  Google Scholar 

  7. T. Lay, J. Hernlund, E. J. Garnero, and M. S. Thorne, Science (Washington, DC, U. S.) 314, 1272 (2006).

    Article  ADS  Google Scholar 

  8. J. B. Naliboff and L. H. Kellogg, Geophys. Res. Lett. 33, L12S09 (2006).

    Google Scholar 

  9. W. L. Mao, G. Shen, V. B. Prakapenka, Y. Meng, A. J. Campbell, D. L. Heinz, J. Shu, R. J. Hemley, and H.-K. Mao, Proc. Natl. Acad. Sci. 101, 15867 (2004).

    Article  ADS  Google Scholar 

  10. S. Merkel, A. Kubo, L. Miyagi, S. Speziale, T. S. Duffy, H. K. Mao, and H. R. Wenk, Science (Washington, DC, U. S.) 311, 644 (2006).

    Article  ADS  Google Scholar 

  11. J. F. Lin, V. V. Struzhkin, S. D. Jacobsen, M. Hu, P. Chow, J. Kung, H. Liu, H. K. Mao, and R. J. Hemley, Nature (London, U.K.) 436, 377 (2005).

    Article  ADS  Google Scholar 

  12. J. F. Lin, A. G. Gavriliuk, V. V. Struzhkin, S. D. Jacobsen, W. Sturhahn, P. C. M. Y. Hu, and C.-S. Yoo, Phys. Rev. B 71, 113107 (2006).

    Article  ADS  Google Scholar 

  13. I. Y. Kantor, L. S. Dubrovinsky, and C. A. McCommon, Phys. Rev. B 73, 100101 (2006).

    Article  ADS  Google Scholar 

  14. A. G. Gavriliuk, J. F. Lin, I. S. Lyubutin, and V. V. Struzhkin, JETP Lett. 84, 161 (2006).

    Article  Google Scholar 

  15. J. F. Lin, V. V. Struzhkin, A. G. Gavriliuk, and I. S. Lyubutin, Phys. Rev. B 75, 177102 (2007).

    Article  ADS  Google Scholar 

  16. J. F. Lin, A. G. Gavriliuk, W. Sturhahn, S. D. Jacobsen, J. Zhao, M. Lerche, and M. Hu, Am. Mineralog. 94, 594 (2009).

    Article  ADS  Google Scholar 

  17. J. F. Lin, S. D. Jacobsen, and R. M. Wentzcovitch, Eos Trans. Am. Geophys. Union 88, 13 (2007).

    Article  ADS  Google Scholar 

  18. A. F. Goncharov, V. V. Struzhkin, and S. D. Jacobsen, Science (Washington, DC, U. S.) 312, 1205 (2006).

    Article  ADS  Google Scholar 

  19. S. Stackhouse, J. Brodholt, D. P. Dobson, and G. D. Price, Geophys. Res. Lett. 33, L12S03 (2006).

    Article  Google Scholar 

  20. A. Bengtson, K. Persson, and D. Morgan, Earth Planet. Sci. Lett. 265, 535 (2008).

    Article  ADS  Google Scholar 

  21. J. F. Lin, G. Vanko, S. D. Jacobsen, V. Iota, V. V. Struzhkin, V. B. Prakapenka, A. Kuznetsov, and C.-S. Yoo, Science (Washington, DC, U. S.) 317, 1740 (2007).

    Article  ADS  Google Scholar 

  22. C. McCammon, I. Kantor, O. Narygina, J. Rouquette, U. Ponkratz, I. Sergueev, M. Mezouar, V. Prakapenka, and L. Dubrovinsky, Nat. Geosci. 1, 684 (2008).

    Article  ADS  Google Scholar 

  23. S. Stackhouse, J. P. Brodholt, and G. D. Price, Earth Planet. Sci. Lett. 253, 282 (2007).

    Article  ADS  Google Scholar 

  24. J. F. Lin, V. V. Struzhkin, H. K. Mao, J. Shu, R. Hemley, Y. Fei, B. Mysen, P. Dera, V. Prakapenka, and G. Shen, Proc. Natl. Acad. Sci. 101, 14027 (2004).

    Article  ADS  Google Scholar 

  25. J. F. Lin, H. Watson, G. Vanko, E. E. Alp, V. B. Prakapenka, P. Dera, V. V. Struzhkin, A. Kubo, J. Zhao, C. McCammon, and W. J. Evans, Nat. Geosci. 1, 688 (2008).

    Article  ADS  Google Scholar 

  26. J.-F. Lin, E. E. Alp, Z. Mao, T. Inoue, C. McCammon, Y. Xiao, P. Chow, and J. Zhao, Am. Mineralog. 97, 592 (2012).

    Article  ADS  Google Scholar 

  27. B. E. Warren and D. I. Modell, Z. Kristallogr. Cryst. Mater. 75, 1 (1930).

    Google Scholar 

  28. A. Bengtson, J. Li, and D. Morgan, Geophys. Res. Lett. 36, L15301 (2009).

    Article  ADS  Google Scholar 

  29. H. Hsu, K. Umemoto, P. Blaha, and R. M. Wentzcovitch, Earth Planet. Sci. Lett. 294, 19 (2010).

    Article  ADS  Google Scholar 

  30. H. Hsu, P. Blaha, M. Cococcioni, and R. M. Wentzcovitch, Phys. Rev. Lett. 106, 118501 (2011).

    Article  ADS  Google Scholar 

  31. H. Horiuchi, E. Ito, and D. J. Weidner, Am. Mineralog. 72, 357 (1987).

    Google Scholar 

  32. Y. Ohashi, Phys. Chem. Miner. (Germany) 10, 217 (1984).

    Article  ADS  Google Scholar 

  33. A. G. Gavriliuk, A. A. Mironovich, and V. V. Struzhkin, Rev. Sci. Instrum. 80, 043906 (2009).

    Article  ADS  Google Scholar 

  34. Y. V. Shvyd’ko, Phys. Rev. B 59, 9132 (1999).

    Article  ADS  Google Scholar 

  35. O. Chaix-Pluchery and J. Kreisel, Phase Trans. 84, 542 (2011).

    Article  Google Scholar 

  36. I. S. Lyubutin and A. G. Gavriliuk, Phys. Usp. 52, 989 (2009).

    Article  ADS  Google Scholar 

  37. I. S. Lyubutin, S. G. Ovchinnikov, A. G. Gavriliuk, and V. V. Struzhkin, Phys. Rev. B 79, 085125 (2009).

    Article  ADS  Google Scholar 

  38. A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, M. Y. Hu, and H. K. Mao, JETP Lett. 82, 243 (2005).

    Article  Google Scholar 

  39. A. G. Gaviliuk, I. A. Trojan, I. S. Lyubutin, V. A. Sarkissian, and S. G. Ovchinnikov, JETP Lett. 100, 688 (2005).

    Article  Google Scholar 

  40. I. S. Lyubutin, A. G. Gavriliuk, I. A. Trojan, and R. A. Sadykov, JETP Lett. 82, 702 (2005).

    Article  ADS  Google Scholar 

  41. I. S. Lyubutin, A. G. Gavriliuk, K. V. Frolov, J.-F. Lin, and I. A. Trojan, JETP Lett. 90, 617 (2009).

    Article  ADS  Google Scholar 

  42. I. S. Lyubutin, J. F. Lin, A. G. Gavriliuk, A. A. Mironovich, A. G. Ivanova, A. L. Vasilyev, and V. V. Roddatis, Am. Mineralog. 98, (2013).

    Google Scholar 

  43. A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, S. G. Ovchinnikov, M. Y. Hu, and P. Chow, Phys. Rev. B 77, 155112 (2008).

    Article  ADS  Google Scholar 

  44. I. S. Lyubutin, V. V. Struzhkin, A. A. Mironovich, A. G. Gavriliuk, P. G. Naumov, J. F. Lin, S. G. Ovchinnikov, S. Sinogeikin, P. Chow, Y. Xiao, and R. J. Hemley, Proc. Natl. Acad. Sci. 110, 7142 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Lyubutin.

Additional information

Original Russian Text © A.G. Gavriliuk, V.V. Struzhkin, A.A. Mironovich, I.S. Lyubutin, J.F. Lin, A.G. Ivanova, P. Chow, Y. Xiao, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 11, pp. 739–746.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavriliuk, A.G., Struzhkin, V.V., Mironovich, A.A. et al. Low-Temperature P–T Phase Diagram of the (Mg, Fe)SiO3 Perovskite. Jetp Lett. 107, 705–712 (2018). https://doi.org/10.1134/S0021364018110085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018110085

Navigation