Skip to main content
Log in

Dynamic compression of exciton-polariton condensates in semiconductor microcavities

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The possibility of the dynamic compression of a polariton system in a planar microcavity after the end of a resonant pump pulse with the formation of the ground state of a condensate on the bottom of the polariton band has been studied. The studies of dynamics of a resonantly excited polariton gas in the mean field approximation have shown that such condensate state can be formed purely dynamically at excitation by coherent convergent Gaussian light pulses with a large aperture if the active region of the cavity is ahead of the waist of the Gaussian beam. The spatial distribution of polaritons in the formed high-density condensate has sharp edges and large jumps of the violet shift and quasimomentum on these edges prevent its monotonic expansion despite the repulsive interaction between polaritons. For this reason, the further evolution of the condensate is primarily due to the discharge of particles from its boundary and is accompanied by a decrease rather than an increase in the size of the high-density region at the initial stage. Thus, the self-sustained regime of the dynamic compression of the polariton condensate can be maintained for a relatively long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).

    Article  ADS  Google Scholar 

  2. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford Univ. Press, Oxford, 2007).

    Book  Google Scholar 

  3. B. Deveaud, The Physics of Semiconductor Microcavities (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  4. D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities (Springer, Berlin, 2012).

    Google Scholar 

  5. A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, and A. Bramati, Nat. Phys. 5, 805 (2009).

    Article  Google Scholar 

  6. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, and B. Deveaud-Plédran, Nat. Phys. 4, 706 (2008).

    Article  Google Scholar 

  7. A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, Phys. Rev. Lett. 105, 256401 (2010).

    Article  ADS  Google Scholar 

  8. K. G. Lagoudakis, B. Pietka, M. Wouters, R. André, and B. Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010).

    Article  ADS  Google Scholar 

  9. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007).

    Article  ADS  Google Scholar 

  10. D. N. Krizhanovskii, S. S. Gavrilov, A. P. D. Love, D. Sanvitto, N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. M. Whittaker, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 77, 115336 (2008).

    Article  ADS  Google Scholar 

  11. A. A. Demenev, A. A. Shchekin, A. V. Larionov, S. S. Gavrilov, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, Phys. Rev. Lett. 101, 136401 (2008).

    Article  ADS  Google Scholar 

  12. S. S. Gavrilov, A. S. Brichkin, A. A. Demenev, A.A.Dorodnyy, S. I. Novikov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, Phys. Rev. B 85, 075319 (2012).

    Article  ADS  Google Scholar 

  13. S. S. Gavrilov, A. S. Brichkin, Ya. V. Grishina, C. Schneider, S. Höfling, and V. D. Kulakovskii, Phys. Rev. B 92, 205312 (2015).

    Article  ADS  Google Scholar 

  14. A. A. Demenev, Ya. V. Grishina, S. I. Novikov, V. D. Kulakovskii, C. Schneider, and S. Höfling, Phys. Rev. B 94, 195302 (2016).

    Article  ADS  Google Scholar 

  15. V. D. Kulakovskii, D. N. Krizhanovskii, A. I. Tartakovskii, N. A. Gippius, and S. G. Tikhodeev, Phys. Usp. 46, 967 (2003).

    Article  ADS  Google Scholar 

  16. J. Herrmann and B. Wilhelmi, Laser fuer ultrakurzelichimpulse: Grundlagen und Anwendungen (Akademie, Berlin, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Kulakovskii.

Additional information

Original Russian Text © V.D. Kulakovskii, S.S. Gavrilov, N.A. Gippius, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 10, pp. 655–660.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakovskii, V.D., Gavrilov, S.S. & Gippius, N.A. Dynamic compression of exciton-polariton condensates in semiconductor microcavities. Jetp Lett. 106, 686–691 (2017). https://doi.org/10.1134/S0021364017220118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017220118

Navigation