Skip to main content
Log in

Magnetic properties of a Na-doped WS2 monolayer in the presence of an isotropic strain

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The magnetic properties of Na-doped WS2 monolayer under strain are investigated by ab initio methods. Without strain, the Na-doped WS2 monolayer is a magnetic nanomaterial and the total magnetic moment is about 1.07μB. We applied strain to Na-doped WS2 monolayer from–10% to 10%. The magnetic properties are modified under different strain; the doped system gets a maximum value of at 2.01μB 10% tensile strain and a minimum value of at 0μB–10% compressive strain. The coupling between 3p states of S and 5d states of W is responsible for the strong strain effect on the magnetic properties. Our studies predict Na-doped WS2 monolayer under strain to be candidates for application in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).

    Article  ADS  Google Scholar 

  3. C. Q. Sun, Nanoscale 2, 1930 (2010).

    Article  ADS  Google Scholar 

  4. X. J. Du, Z. Chen, J. Zhang, Z. R. Ning, and X. L. Fan, Superlatt. Microstruct. 67, 40 (2014).

    Article  ADS  Google Scholar 

  5. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  ADS  Google Scholar 

  6. Y. D. Ma, Y. Dai, W. Wei, C. W. Niu, L. Yu, and B. B. Huang, J. Phys. Chem. C 115, 20237 (2011).

    Article  Google Scholar 

  7. X. R. Li, Y. Dai, Y. D. Ma, and B. B. Huang, Phys. Chem. Chem. Phys. 16, 13383 (2014).

    Article  Google Scholar 

  8. Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, J. B. Lu, and B. B. Huang, Phys. Chem. Chem. Phys. 13, 15546 (2011).

    Article  Google Scholar 

  9. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  ADS  Google Scholar 

  10. D. Braga, I. G. Lezama, H. Berger, and A. Morpurgo, Nano Lett. 12, 5218 (2012).

    Article  ADS  Google Scholar 

  11. Y. Li, D. Wu, Z. Zhou, C. R. Cabrera, and Z. Chen, J. Phys. Chem. Lett. 3, 2221 (2012).

    Article  Google Scholar 

  12. Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008).

    Article  Google Scholar 

  13. Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, J. Mater. Chem. A 2, 12104 (2014).

    Article  Google Scholar 

  14. Q. Tang, Z. Zhou, and Z. Chen, WIREs Comput. Mol. Sci. 5, 360 (2015).

    Article  Google Scholar 

  15. A. Hashmi and J. Hong, J. Phys. Chem. C 119, 9198 (2015).

    Article  Google Scholar 

  16. C. J. Gil, A. Pham, A. Yu, and S. Li, J. Phys.: Condens. Matter 26, 306004 (2014).

    Google Scholar 

  17. A. Ramasubramaniam and D. Naveh, Phys. Rev. B 87, 195201 (2013).

    Article  ADS  Google Scholar 

  18. H. E. Sliney, Tribol. Int. 15, 303 (1982).

    Article  Google Scholar 

  19. Y. Yang, X. L. Fan, and H. Zhang, Comput. Mater. Sci. 117, 354 (2016).

    Article  Google Scholar 

  20. Y. F. Zhang, Y. Zhang, and F. Liu, Phys. Rev. B 83, 041403 (2011).

    ADS  Google Scholar 

  21. Z. Liu, J. Wu, W. Duan, M. G. Lagally, and F. Liu, Phys. Rev. Lett. 105, 016802 (2010).

    Article  ADS  Google Scholar 

  22. F. Liu, P. Rugheimer, E. Mateeva, D. E. Savage, and M. G. Lagally, Nature 416, 498 (2002).

    Article  ADS  Google Scholar 

  23. W. M. Ming, Z. F. Wang, M. Zhou, M. Yoon, and F. Liu, Nano Lett. 16, 404 (2016).

    Article  ADS  Google Scholar 

  24. H. L. Shi, H. Pan, Y. W. Zhang, and I. B. Yakobson, Phys. Rev. B 88, 205305 (2013).

    Article  ADS  Google Scholar 

  25. Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).

    Article  Google Scholar 

  26. L. Z. Kou, C. Tang, W. L. Guo, and C. F. Chen, ACS Nano 5, 1012 (2012).

    Article  Google Scholar 

  27. Y. G. Zhou, Q. L. Su, Z. G. Wang, H. Q. Deng, and X. T. Zu, Phys. Chem. Chem. Phys. 15, 18464 (2013).

    Article  Google Scholar 

  28. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  29. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  30. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  31. R. Mishra, W. Zhou, S. J. Pennycook, S. T. Pantelides, and J. C. Idrobo, Phys. Rev. B 88, 144409 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Yin, H.H. & Chu, J.H. Magnetic properties of a Na-doped WS2 monolayer in the presence of an isotropic strain. Jetp Lett. 106, 672–676 (2017). https://doi.org/10.1134/S0021364017220039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017220039

Navigation