Skip to main content
Log in

Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted М1 and М2, and dimer associates formed by two Yb3+ ions in nearby positions М1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin–spin coupling between ytterbium ions in the associate has predominantly a dipole–dipole character, which makes it possible to control the energy of the spin–spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position М1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, Nat. Nanotechnol. 2, 39 (2007).

    Article  ADS  Google Scholar 

  2. F. Luis, A. Repolles, M. J. Martinez-Perez, D. Aguila, O. Roubeau, D. Zueco, P. J. Alonso, M. Evangelisti, A. Camon, J. Sese, L. A. Barrios, and G. Aromi, Phys. Rev. Lett. 107, 117203 (2011).

    Article  ADS  Google Scholar 

  3. 3. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, Nature 456, 773 (2008).

    Article  ADS  Google Scholar 

  4. C. W. Thiel, T. Böttger, and R. L. Cone, J. Lumin. 131, 353 (2011).

    Article  Google Scholar 

  5. M. Bonarota, J.-L. le Gouít, and T. Chaneliére, New J. Phys. 13, 013013 (2011).

    Article  ADS  Google Scholar 

  6. C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, Laser Phys. 24, 106002 (2014).

    Article  ADS  Google Scholar 

  7. M. Lovrić, P. Glasenapp, D. Suter, B. Tumino, A. Ferrier, P. Goldner, M. Sabooni, L. Rippe, and S. Kröll, Phys. Rev. B 84, 104417 (2011).

    Article  ADS  Google Scholar 

  8. P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, Phys. Rev. Lett. 114, 230502 (2015).

    Article  ADS  Google Scholar 

  9. M. Gündogan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, Phys. Rev. Lett. 114, 230501 (2015).

    Article  Google Scholar 

  10. M. Motokawa, H. Ohta, N. Makita, and H. Ikeda, J. Phys. Soc. Jpn. 61, 322 (1992).

    Article  ADS  Google Scholar 

  11. A. V. Gaster, E. V. Zharikov, A. A. Konovalov, K. A. Subbotin, and V. F. Tarasov, JETP Lett. 77, 625 (2003).

    Article  ADS  Google Scholar 

  12. A. A. Konovalov, D. A. Lis, K. A. Subbotin, V. F. Tarasov, and E. V. Zharikov, Appl. Magn. Reson. 45, 193 (2014).

    Article  Google Scholar 

  13. J. D. Birle, G. V. Gibbs, P. B. Moore, and J. V. Smith, Am. Mineral. 53, 807 (1968).

    Google Scholar 

  14. V. F. Tarasov, R. B. Zaripov, N. K. Solovarov, A. A. Sukhanov, and E. V. Zharikov, JETP Lett. 93, 282 (2011).

    Article  ADS  Google Scholar 

  15. V. F. Tarasov, R. B. Zaripov, N. K. Solovarov, A. A. Sukhanov, and E. V. Zharikov, Appl. Magn. Reson. 45, 239 (2014).

    Article  Google Scholar 

  16. A. Schweiger and G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, New York, 2001), p. 429.

  17. J. Gale and A. L. Rohl, Mol. Simul. 29, 291 (2003).

    Article  Google Scholar 

  18. G. V. Lewis and C. R. A. Catlow, J. Phys. C 18, 1149 (1985).

    Article  ADS  Google Scholar 

  19. V. B. Dudnikova, V. S. Urusov, and E. V. Zharikov, Phys. Solid State 56, 1379 (2014).

    Article  ADS  Google Scholar 

  20. S. Stoll and A. Schweiger, J. Magn. Reson. 78, 42 (2006).

    Article  ADS  Google Scholar 

  21. S. Stoll and A. Schweiger, Biol. Magn. Reson. 27, 299 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasov.

Additional information

Original Russian Text © V.F. Tarasov, A.A. Sukhanov, V.B. Dudnikova, E.V. Zharikov, D.A. Lis, K.A. Subbotin, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 2, pp. 78–83.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.F., Sukhanov, A.A., Dudnikova, V.B. et al. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals. Jetp Lett. 106, 92–96 (2017). https://doi.org/10.1134/S0021364017140132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017140132

Navigation