Skip to main content
Log in

Phase transitions and critical properties in the antiferromagnetic Heisenberg model on a layered cubic lattice

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Phase transitions and critical properties in the antiferromagnetic Heisenberg model on a layered cubic lattice with allowance for intralayer next nearest neighbor interactions have been studied using the replica Monte Carlo algorithm. The character of phase transitions has been analyzed using the histogram method and the Binder cumulant method. It has been found that a transition from the collinear to paramagnetic phase in the model under study occurs as a second order phase transition. The statistical critical exponents of the specific heat α, susceptibility γ, order parameter β, and correlation radius ν, as well as the Fisher index η, have been calculated using the finite-size scaling theory. It has been shown that the three-dimensional Heisenberg model on the layered cubic lattice with allowance for the next nearest neighbor interaction belongs to the same universality class of the critical behavior as the antiferromagnetic Heisenberg model on a layered triangular lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Dotsenko, Phys. Usp. 38, 457 (1995).

    Article  ADS  Google Scholar 

  2. S. E. Korshunov, Phys. Usp. 49, 225 (2006).

    Article  ADS  Google Scholar 

  3. A. Malakis, P. Kalozoumis, and N. Tyraskis, Eur. Phys. J. B 50, 63 (2006).

    Article  ADS  Google Scholar 

  4. S. S. Sosin, L. A. Prozorova, and A. I. Smirnov, Phys. Usp. 48, 83 (2005).

    Article  ADS  Google Scholar 

  5. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Low Temp. Phys. 37, 1001 (2011).

    Article  Google Scholar 

  6. A. K. Murtazaev, M. K. Ramazanov, F. A. Kassan- Ogly, and M. K. Badiev, J. Exp. Theor. Phys. 117, 1091 (2013).

    Article  Google Scholar 

  7. F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Magn. Magn. Mater. 324, 3418 (2012).

    Article  ADS  Google Scholar 

  8. A. Kalz and A. Honecker, Phys. Rev. B 86, 134410 (2012).

    Article  ADS  Google Scholar 

  9. S. Jin, A. Sen, and A. W. Sandvik, Phys. Rev. Lett. 108, 045702 (2012).

    Article  ADS  Google Scholar 

  10. S. Jin, A. Sen, W. Guo, and A. W. Sandvik, Phys. Rev. B 87, 144406 (2013).

    Article  ADS  Google Scholar 

  11. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 101, 714 (2015).

    Article  ADS  Google Scholar 

  12. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 103, 460 (2016).

    Article  ADS  Google Scholar 

  13. S. V. Maleev, Phys. Usp. 45, 569 (2002).

    Article  ADS  Google Scholar 

  14. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. Solid State 52, 1673 (2010).

    Article  ADS  Google Scholar 

  15. A. K. Murtazaev and M. K. Ramazanov, Phys. Solid State 53, 1067 (2011).

    Article  ADS  Google Scholar 

  16. D. P. Landau and K. Binder, Monte Carlo Simulations in Statistical Physics (Cambridge Univ. Press, Cambridge, UK, 2000).

    MATH  Google Scholar 

  17. C. Pinettes and H. T. Diep, J. Appl. Phys. 83, 6317 (1998).

    Article  ADS  Google Scholar 

  18. V. Thanh Ngo and H. T. Diep, Phys. Rev. E 78, 031119 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Mailhot, M. L. Plumer, and A. Caille, Phys. Rev. B 50, 6854 (1994).

    Article  ADS  Google Scholar 

  20. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Low Temp. Phys. 35, 521 (2009).

    Article  Google Scholar 

  21. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Exp. Theor. Phys. 115, 303 (2012).

    Article  ADS  Google Scholar 

  22. A. K. Murtazaev, M. K. Ramazanov, F. A. Kassan- Ogly, and D. R. Kurbanova, J. Exp. Theor. Phys. 120, 110 (2015).

    Article  ADS  Google Scholar 

  23. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. B: Condens. Matter 476, 1 (2015).

    Article  ADS  Google Scholar 

  24. M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Solid State Commun. 233, 35 (2016).

    Article  ADS  Google Scholar 

  25. M. K. Badiev, A. K. Murtazaev, and M. K. Ramazanov, J. Exp. Theor. Phys. 123, 623 (2016).

    Article  ADS  Google Scholar 

  26. A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers (Peptide Sci.) 60, 96 (2001).

    Article  Google Scholar 

  27. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, An Introduction (Springer, Berlin, Heidelberg, 2010).

    Book  MATH  Google Scholar 

  28. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  ADS  Google Scholar 

  29. F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).

    Article  ADS  Google Scholar 

  30. M. K. Ramazanov, JETP Lett. 94, 311 (2011).

    Article  ADS  Google Scholar 

  31. P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 43, 6087 (1991).

    Article  ADS  Google Scholar 

  32. P. Calabrese, P. Parruccini, A. Pelissetto, and E. Vicari, Phys. Rev. B 70, 174439-1 (2004).

    Google Scholar 

  33. G. Zumbac, Nucl. Phys. B 413, 771 (1994).

    Article  ADS  Google Scholar 

  34. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 65, 144520 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ramazanov.

Additional information

Original Russian Text © M.K. Ramazanov, A.K. Murtazaev, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 2, pp. 72–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramazanov, M.K., Murtazaev, A.K. Phase transitions and critical properties in the antiferromagnetic Heisenberg model on a layered cubic lattice. Jetp Lett. 106, 86–91 (2017). https://doi.org/10.1134/S0021364017140107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017140107

Navigation