Skip to main content
Log in

Role of a fermion condensate in the structure of high-temperature pairing in cuprates

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The anomalous properties of a pairing gap in cuprate superconductors have been explained under the assumption that their electron systems in the normal phase exhibit a fermion condensate, i.e., a set of dispersionless states close to the nominal Fermi surface. It has been shown that exactly the fermion condensate is responsible for D-state pairing in cuprates. More specifically, the effective Coulomb repulsion in the Cooper channel, which prevents the existence of superconductivity in normal metals in the S channel, makes it high-temperature in the D channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  2. G. E. Volovik, JETP Lett. 53, 222 (1991).

    ADS  Google Scholar 

  3. P. Nozieres, J. Phys. I 2, 443 (1992).

  4. V. A. Khodel, V. V. Khodel, and V. R. Shaginyan, Phys. Rep. 249, 1 (1994).

    Article  ADS  Google Scholar 

  5. V. A. Khodel, V. R. Shaginyan, and P. Shuk, JETP Lett. 63, 752 (1996).

    Article  ADS  Google Scholar 

  6. V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev. Lett. 89, 076401 (2002).

    Article  ADS  Google Scholar 

  7. G. E. Volovik, Springer Lect. Notes Phys. 718, 31 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. A. Khodel, J. W. Clark, Haochen Li, and M. V. Zverev, Phys. Rev. Lett. 98, 216404 (2007).

    Article  ADS  Google Scholar 

  9. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. B 78, 075120 (2008).

    Article  ADS  Google Scholar 

  10. T. T. Heikkil, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94, 233 (2011).

    Article  ADS  Google Scholar 

  11. J. W. Clark, M. V. Zverev, and V. A. Khodel, Ann. Phys. 327, 3063 (2012).

    Article  ADS  Google Scholar 

  12. V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Phys. Rev. B 86, 085147 (2012).

    Article  ADS  Google Scholar 

  13. D. Yudin, D. Harshmeyer, H. Hafermann, O. Ericsson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).

    Article  ADS  Google Scholar 

  14. M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and V. A. Stephanovich, Springer Ser. Solid-State Sci. 128 (2014).

    Google Scholar 

  15. V. A. Khodel, JETP Lett. 103, 795 (2016); arXiv1604.0426.

    Article  Google Scholar 

  16. G. E. Volovik, J. Low Temp. Phys. 43, 47 (2017).

    Article  Google Scholar 

  17. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

    Article  ADS  Google Scholar 

  18. D. S. Marshall, D. S. Dessau, A. G. Loeser, C-H. Park, A. Y. Matsuura, J. N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W. E. Spicer, and Z.-X. Shen, Phys. Rev. Lett. 76, 4841 (1996).

    Article  ADS  Google Scholar 

  19. A. G. Loeser, Z. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A. Kapitulnik, Science 273, 325 (1996).

    Article  ADS  Google Scholar 

  20. H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintzakis, Nature 382, 51 (1996).

    Article  ADS  Google Scholar 

  21. A. Ino, T. Mizokawa, K. Kobayashi, A. Fujimori, T. Sasagawa, T. Kimura, K. Kishio, K. Tamasaku, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 81, 2124 (1998).

    Article  ADS  Google Scholar 

  22. A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mikozawa, A. Fujimori, Z.-X. Shen, T. Kakeshita, H. Eisaki, and S. Uchida, Phys. Rev. B 65, 094504 (2002).

    Article  ADS  Google Scholar 

  23. T. Yoshida, X. Y. Zhou, K. Tanaka, W. L. Jang, Z. Hussain, Z.-X. Shen, A. Fujimori, S. Sahrakorpi, M. Lindroos, R. S. Markiewicz, A. Bansil, S. Komiya, Y. Ando, H. Eisaki, T. Kakeshita, and S. Uchida, Phys. Rev. B 74, 224510 (2006).

    Article  ADS  Google Scholar 

  24. M. Hashimoto, T. Yoshida, K. Tanaka, A. Fujimori, M. Okusawa, S. Wakimoto, K. Yamada, T. Kakeshita, H. Eisaki, and S. Uchida, Phys. Rev. B 75, 140503(R) (2007).

    Article  ADS  Google Scholar 

  25. A. Kanigel, U. Chatterjee, M. Randeria, M. R. Norman, G. Koren, K. Kadowaki, and J. C. Campuzano, Phys. Rev. Lett. 99, 157001 (2007).

    Article  ADS  Google Scholar 

  26. T. Yoshida, X. Y. Zhou, D. H. Lu, S. Komiya, Y. Ando, H. Eisaki, T. Kakeshita, S. Uchida, Z. Hussain, Z.-X. Shen, and A. Fujimori, J. Phys.: Condens. Matter 19, 125209 (2007).

    ADS  Google Scholar 

  27. S. Hfner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Rep. Prog. Phys. 71, 062501 (2008).

    Article  ADS  Google Scholar 

  28. M. Hashimoto, I. M. Vishik, R.-H. He, T. Devereaux, and Z.-X. Shen, Nat. Phys. 10, 483 (2014).

    Article  Google Scholar 

  29. A. Kaminski, T. Kondo, T. Takeuchi, and G. Gu, Philos. Mag. 95, 453 (2015).

    Article  ADS  Google Scholar 

  30. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).

    Article  ADS  Google Scholar 

  31. V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).

    Article  ADS  Google Scholar 

  32. V. A. Khodel and M. V. Zverev, JETP Lett. 85, 404 (2007).

    Article  ADS  Google Scholar 

  33. H. Kontani, Transport Phenomena in Strongly Correlated Fermi Liquids (Springer, Berlin, 2013).

    Book  Google Scholar 

  34. V. R. Shaginyan, A. Z. Msezane, V. A. Stephanovich, and E. V. Kirichenko, Europhys. Lett. 76, 898 (2006).

    Article  ADS  Google Scholar 

  35. M. V. Zverev, V. A. Khodel, and J. W. Clark, JETP Lett. 74, 46 (2001).

    Article  ADS  Google Scholar 

  36. V. A. Khodel, J. W. Clark, V. R. Shaginyan, and M. V. Zverev, arXiv:1505.01966.

  37. A. S. Alexandrov, Phys. Rev. B 77, 094502 (2008).

    Article  ADS  Google Scholar 

  38. V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP Lett. 90, 628 (2009), JETP Lett. 94, 73 (2011).

    Article  ADS  Google Scholar 

  39. D. J. Thouless, Ann. Phys. (N.Y.) 10, 553 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Chakravarty, Phys. Rev. B 66, 224505 (2002).

    Article  ADS  Google Scholar 

  41. R. M. Fernandes and A. V. Chubukov, Rep. Prog. Phys. 80, 014503 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khodel.

Additional information

Original Russian Text © V.A. Khodel, J.W. Clark, M.V. Zverev, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 4, pp. 238–244.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodel, V.A., Clark, J.W. & Zverev, M.V. Role of a fermion condensate in the structure of high-temperature pairing in cuprates. Jetp Lett. 105, 267–272 (2017). https://doi.org/10.1134/S0021364017040099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017040099

Navigation