Skip to main content
Log in

Study of the anisotropy of the dielectric response of Na1/2Bi1/2TiO3 relaxor ferroelectric

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The dielectric response, conductivity, and domain structure of (Na1/2Bi1/2)TiO3 single crystals are studied in the temperature range of 290–750 K for the [100], [110], and [111] crystallographic directions. It is shown that the region of optical isotropization is observed in polarized light in the temperature range of 570–620 K. In this case, the birefringence (Δn) decreases and disappears (together with the image of the domain structure) for the [100] directions. The region of optical isotropization in the [111] directions is characterized by the disappearance of the image of the domain structure and by the existence of individual regions with partial quenching. The domain structure in the [110] directions remains distinguished against the background of a significant decrease in Δn in the indicated temperature range. The region of isotropization is also manifested in the temperature dependence of the imaginary part of the dielectric response and is determined by the isotropic character of the conductivity in the range of 570–620 K. The bulk conductivity has a thermally activated character with activation energies E a = 50−60 meV at T < 500 K and E a = 700−900 meV for T > 620 K. The low-frequency dispersion of the dielectric response is determined by the Maxwell–Wagner mechanism and is due to an increase in the ionic conductivity at temperatures above 620 K. The anisotropy of the susceptibility holds in the entire studied ranges of frequencies (25 Hz–1 MHz) and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. Solid State 2, 2651 (1960).

    Google Scholar 

  2. L. E. Cross, Ferroelectrics 151, 305 (1994).

    Article  Google Scholar 

  3. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).

    Article  ADS  Google Scholar 

  4. S. B. Vakhrushev, V. A. Isupov, O. E. Kvyatkovsky, N. M. Okuneva, I. P. Pronin, G. A. Smolensky, and P. P. Syrnikov, Ferroelectrics 63, 153 (1985).

    Article  Google Scholar 

  5. G. O. Jones and P. A. Thomas, Acta Crystallogr. B 58, 168 (2002).

    Article  Google Scholar 

  6. J. Petzelt, S. Kamba, J. Fabry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein, and G. E. Kugel, J. Phys.: Condens. Matter 16, 2719 (2004).

    ADS  Google Scholar 

  7. V. Dorcet, G. Trolliard, and P. Boullay, Chem. Mater. 20, 5061 (2008).

    Article  Google Scholar 

  8. A. M. Balagurov, E. Yu. Koroleva, A. A. Naberezhnov, V. P. Sakhnenko, B. N. Savenko, N. V. Ter-Oganessian, and S. B. Vakhrushev, Phase Trans. 79, 163 (2006).

    Article  Google Scholar 

  9. S. Gorfman and P. A. Thomas, J. Appl. Crystallogr. 43, 1409 (2010).

    Article  Google Scholar 

  10. I. P. Pronin, P. P. Syrnikov, V. A. Isupov, V. M. Egorov, and N. V. Zaitseva, Ferroelectrics 25, 395 (1980).

    Article  Google Scholar 

  11. C.-S. Tu, I. G. Siny, and V. H. Schmidt, Phys. Rev. B 49, 11550 (1994).

    Article  ADS  Google Scholar 

  12. S.-E. Park, S.-J. Chung, and I.-T. Kim, Am. Ceram. Soc. 79, 1290 (1996).

    Article  Google Scholar 

  13. M. Geday, J. Kreisel, A. M. Glazer, and K. Roleder, J. Appl. Crystallogr. 33, 909 (2000).

    Article  Google Scholar 

  14. S. Gorfman, A. M. Glazer, Y. Noguchi, M. Miyayama, H. Luo, and P. A. Thomas, J. Appl. Crystallogr. 45, 444 (2012).

    Article  Google Scholar 

  15. T. V. Kruzina, V. V. Gene, V. A. Isupov, and E. V. Sinyakov, Sov. Phys. Crystallogr. 26, 482 (1981).

    Google Scholar 

  16. I. P. Pronin, P. P. Syrnikov, V. A. Isupov, and G. A. Smolenskii, Sov. Tech. Phys. Lett. 8, 563 (1982).

    Google Scholar 

  17. D. O’Neill, R. M. Bowman, and J. M. Gregg, Appl. Phys. Lett. 77, 1520 (2000).

    Article  ADS  Google Scholar 

  18. R. A. Cowley, S. Gvasaliya, S. G. Lushnikov, B. Roessli, and G. M. Rotaru, Adv. Phys. 60, 229 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zalesskii.

Additional information

Original Russian Text © V.G. Zalesskii, A.D. Polushina, E.D. Obozova, A.V. Dmitriev, P.P. Syrnikov, S.G. Lushnikov, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 3, pp. 175–181.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalesskii, V.G., Polushina, A.D., Obozova, E.D. et al. Study of the anisotropy of the dielectric response of Na1/2Bi1/2TiO3 relaxor ferroelectric. Jetp Lett. 105, 189–194 (2017). https://doi.org/10.1134/S0021364017030146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017030146

Navigation