Skip to main content
Log in

Simulated Cu–Zr glassy alloys: the impact of composition on icosahedral order

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The structural properties of the simulated CuαZr1-α glassy alloys are studied in the wide range of the copper concentration to clarify the impact of the composition on the number density of the icosahedral clusters. Both bond orientational order parameters and Voronoi tessellation methods are used to identify these clusters. Our analysis shows that abundance of the icosahedral clusters and the chemical composition of these clusters are essentially nonmonotonic versus and demonstrate local extrema. That qualitatively explains the existence of pinpoint compositions of high glass-forming ability observing in Cu Zr alloys. Finally, it has been shown that Voronoi method overestimates drastically the abundance of the icosahedral clusters in comparison with the bond orientational order parameters one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson, and C. Garland, Acta Mater. 52, 2621 (2004).

    Article  Google Scholar 

  2. D. Wang, Y. Li, B. B. Sun, M. L Sui, K. Lu, and E. Ma, Appl. Phys. Lett. 84, 4029 (2004).

    Article  ADS  Google Scholar 

  3. W. H. Wang, J. J. Lewandowski, and A. L. Greer, J. Mater. Res. 20, 2307 (2005).

    Article  ADS  Google Scholar 

  4. Y. Li, Q. Guo, J. A. Kalb, and C.V. Thompson, Science 322, 1816 (2008).

    Article  ADS  Google Scholar 

  5. L. Yang, G. Q. Guo, L.Y. Chen, C. L. Huang, T. Ge, D. Chen, P. K. Liaw, K. Saksl, Y. Ren, Q. S. Zeng, B. LaQua, F. G. Chen, and J. Z. Jiang, Phys. Rev. Lett. 109, 105502 (2012).

    Article  ADS  Google Scholar 

  6. M. Li, C. Z. Wang, S. G. Hao, M. J. Kramer, and K. M. Ho, Phys. Rev. B 80, 184201 (2009).

    Article  ADS  Google Scholar 

  7. H. L. Peng, M. Z. Li, W. H. Wang, C.-Z. Wang, and K. M. Ho, Appl. Phys. Lett. 96, 021901 (2010).

    Article  ADS  Google Scholar 

  8. R. Soklaski, Z. Nussinov, Z. Markow, K. F. Kelton, and L. Yang, Phys. Rev. B 87, 184203 (2013).

    Article  ADS  Google Scholar 

  9. Z. W. Wu, M. Z. Li, W. H. Wang, and K. X. Liu, Phys. Rev. B 88, 054202 (2013).

    Article  ADS  Google Scholar 

  10. D. D. Wen, P. Peng, Y. Q. Jiang, and R. S. Liu, J. Non-Cryst. Solids 378, 61 (2013).

    Article  ADS  Google Scholar 

  11. L. L. Meng, L. Wang, S. H. Wang, and Y. Qi, Phys. Chem. Liq. 53, 348 (2015).

    Article  Google Scholar 

  12. D. Wang, S.-J. Zhao, and L.-M. Liu, J. Phys. Chem. A 119, 806 (2015).

    Article  Google Scholar 

  13. J. A. van Meel, L. Filion, C. Valeriani, and D. Frenkel, J. Chem. Phys. 136, 234107 (2012).

    Article  ADS  Google Scholar 

  14. A. Malins, S.R. Williams, J. Eggers, and C. P. Royall, J. Chem. Phys. 139, 234506 (2013).

    Article  ADS  Google Scholar 

  15. F. Aurenhammer, ACM Comput. Surv. 23, 345 (1991).

    Article  Google Scholar 

  16. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981).

    Article  ADS  Google Scholar 

  17. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  18. K. Vollmayr, W. Kob, and K. Binder, J. Chem. Phys. 105, 4714 (1996).

    Article  ADS  Google Scholar 

  19. F. Zhang, M. I. Mendelev, Y. Zhang, C.-Z. Wang, M. J. Kramer, and K.-M. Ho, Appl. Phys. Lett. 104, 061905 (2014).

    Article  ADS  Google Scholar 

  20. Y.-J. Hu, D.-D. Wen, Y.-Q. Jiang, Y.-H. Deng, and P. Peng, T. Nonferr. Metal. Soc. 25, 533 (2015).

    Article  Google Scholar 

  21. R. E. Ryltsev, B. A. Klumov, N. M. Chtchelkatchev, and R. Y. Shunyaev, J. Chem. Phys. 145, 034506 (2016).

    Article  ADS  Google Scholar 

  22. M. I. Mendelev, M. J. Kramer, R. T. Ott, D. J. Sordelet, D. Yagodin, and P. Popel, Philos. Mag. 89, 967 (2009).

    Article  ADS  Google Scholar 

  23. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

  24. A. C. Mitus and A. Z. Patashinskii, Phys. Lett. A 87, 179 (1982).

    Article  ADS  Google Scholar 

  25. T. M. Truskett, S. Torquato, and P. G. Debenedetti, Phys. Rev. E 62, 993 (2000).

    Article  ADS  Google Scholar 

  26. J. R. Errington, P. G. Debenedetti, and S. Torquato, J. Chem. Phys. 118, 2256 (2003).

    Article  ADS  Google Scholar 

  27. M. D. Rintoul and S. Torquato, J. Chem. Phys. 105, 9258 (1996).

    Article  ADS  Google Scholar 

  28. V. Luchnikov, A. Gervois, P. Richard, L. Oger, and J. P. Troadec, J. Mol. Liq. 96–97, 185 (2002).

    Article  Google Scholar 

  29. Y. Jin and H. A. Makse, Physica A 389, 5362 (2010).

    Article  ADS  Google Scholar 

  30. B. A. Klumov, JETP Lett. 97, 327 (2013).

    Article  ADS  Google Scholar 

  31. B. A. Klumov, JETP Lett. 98, 259 (2013).

    Article  ADS  Google Scholar 

  32. V. Baranau and U. Tallarek, Soft Matter 10, 3826 (2014).

    Article  ADS  Google Scholar 

  33. B. A. Klumov, Y. Jin, and H. A. Makse, J. Phys. Chem. B 118, 10761 (2014).

    Article  Google Scholar 

  34. G. E. Morfill, A. V. Ivlev, S. A. Khrapak, B. A. Klumov, M. Rubin-Zuzic, U. Konopka, and H. M. Thomas, Contrib. Plasm. Phys. 44, 450 (2004).

    Article  ADS  Google Scholar 

  35. M. Rubin-Zuzic, G. E. Morfill, A.V. Ivlev, R. Pompl, B. A. Klumov, W. Bunk, H. M. Thomas, H. Rothermel, O. Havnes, and A. Fouquet, Nat. Phys. 2, 181 (2006).

    Article  Google Scholar 

  36. B. A. Klumov and G. E. Morfill, J. Exp. Theor. Phys. 107, 908 (2008).

    Article  ADS  Google Scholar 

  37. B. A. Klumov and G. E. Morfill, JETP Lett. 90, 444 (2009).

    Article  ADS  Google Scholar 

  38. B. Klumov, P. Huber, S. Vladimirov, H. Thomas, A. Ivlev, G. Morfill, V. Fortov, A. Lipaev, and V. Molotkov, Plasma Phys. Contr. Fusion. 51, 124028 (2009).

    Article  ADS  Google Scholar 

  39. B.A. Klumov, Phys. Usp. 53, 1053 (2010).

    Article  ADS  Google Scholar 

  40. S. A. Khrapak, B. A. Klumov, P. Huber, V. I. Molotkov, A. M. Lipaev, V. N. Naumkin, A. V. Ivlev, H. M. Thomas, M. Schwabe, G. E.Morfill, O. F. Petrov, V. E. Fortov, Yu. Malentschenko, and S. Volkov, Phys. Rev. E 85, 066407 (2012).

    Article  ADS  Google Scholar 

  41. U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Science 292, 258 (2001)

    Article  ADS  Google Scholar 

  42. T. Kawasaki and H. Tanaka, Proc. Natl. Acad. Sci. 107, 14036 (2010).

    Article  ADS  Google Scholar 

  43. O. A. Vasilyev, B. A. Klumov, and A. V. Tkachenko, Phys. Rev. E 88, 012302 (2013).

    Article  ADS  Google Scholar 

  44. O. A. Vasilyev, B. A. Klumov, and A. V. Tkachenko, Phys. Rev. E 92, 012308 (2015).

    Article  ADS  Google Scholar 

  45. B. A. Klumov, S. A. Khrapak, and G. E. Morfill, Phys. Rev. B 83, 184105 (2011).

    Article  ADS  Google Scholar 

  46. A. Hirata, L. J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A.R. Yavari, and M.W. Chen, Science 341, 376 (2013).

    Article  ADS  Google Scholar 

  47. R. E. Ryltsev and N. M. Chtchelkatchev, Phys. Rev. E 88, 052101 (2013).

    Article  ADS  Google Scholar 

  48. R. Ryltsev, B. Klumov, and N. Chtchelkachev, Soft. Matter 11, 6991 (2015).

    Article  ADS  Google Scholar 

  49. L. Ward, D. Miracle, W. Windl, O. N. Senkov, and K. Flores, Phys. Rev. B 88, 134205 (2013).

    Article  ADS  Google Scholar 

  50. K. N. Lad, J. Non-Cryst. Solids 404, 55 (2014).

    Article  ADS  Google Scholar 

  51. J. L. Finney, Proc. R. Soc. London, Ser. A 319, 479 (1970).

    Article  ADS  Google Scholar 

  52. Y. Q. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).

    Article  Google Scholar 

  53. A. Malins, J. Eggers, C. P. Royall, S. R. Williams, and H. Tanaka, J. Chem. Phys. 138, 12 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Klumov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klumov, B.A., Ryltsev, R.E. & Chtchelkatchev, N.M. Simulated Cu–Zr glassy alloys: the impact of composition on icosahedral order. Jetp Lett. 104, 546–551 (2016). https://doi.org/10.1134/S0021364016200017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016200017

Navigation