Skip to main content
Log in

Neutrino induced magnetic moment and spin precession

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

When propagating through a dispersing medium, a massive neutrino acquires an induced magnetic moment that may give rise to a helicity flip in an external magnetic field with a larger probability than that caused by the anomalous magnetic moment. This phenomenon is investigated in the framework of relativistic quantum mechanics and of the generalized Bargmann–Michel–Telegdi equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Giunti and A. Studenikin, Rev. Mod. Phys. 87, 531 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  2. G. G. Raffelt, Stars as Laboratories for Fundamental Physics (Univ. Chicago Press, Chicago, 1996).

    Google Scholar 

  3. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford Univ. Press, Oxford, 2007).

    Book  Google Scholar 

  4. A. D. Dolgov, Phys. Rep. 370, 333 (2002).

    Article  ADS  Google Scholar 

  5. A. Cisneros, Astrophys. Space Sci. 10, 87 (1971).

    Article  ADS  Google Scholar 

  6. K. Fujikawa and R. E. Shrock, Phys. Rev. Lett. 45, 963 (1980).

    Article  ADS  Google Scholar 

  7. M. B. Voloshin, M. I. Vysotskii, and L. B. Okun’, Sov. Phys. JETP 64, 446 (1986).

    Google Scholar 

  8. J. Schechter and J. W. F. Valle, Phys. Rev. D 24, 1883 (1981), Phys. Rev. D 25, 283(E) (1982).

    Article  ADS  Google Scholar 

  9. E. Kh. Akhmedov, Phys. Lett. B 213, 64 (1988).

    Article  ADS  Google Scholar 

  10. C.-S. Lim and W. J. Marciano, Phys. Rev. D 37, 1368 (1988).

    Article  ADS  Google Scholar 

  11. E. Kh. Akhmedov and M. Yu. Khlopov, Mod. Phys. Lett. A 3, 451 (1988).

    Article  ADS  Google Scholar 

  12. J. C. D’Olivo and O. G. Miranda, AIP Conf. Proc. 857, 37 (2006).

    Article  ADS  Google Scholar 

  13. B. W. Lee and R. E. Shrock, Phys. Rev. D 16, 1444 (1977).

    Article  ADS  Google Scholar 

  14. R. E. Shrock, Nucl. Phys. B 206, 359 (1982).

    Article  ADS  Google Scholar 

  15. A. V. Derbin, Phys. Usp. 57, 512 (2014).

    Article  ADS  Google Scholar 

  16. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).

    Article  ADS  Google Scholar 

  17. S. P. Mikheev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985).

    Google Scholar 

  18. A. E. Lobanov and A. I. Studenikin, Phys. Lett. B 564, 27 (2003).

    Article  ADS  Google Scholar 

  19. A. I. Studenikin and A. I. Ternov, Phys. Lett. B 608, 107 (2005).

    Article  ADS  Google Scholar 

  20. A. V. Grigoriev, A. I. Studenikin, and A. I. Ternov, Phys. Lett. B 622, 199 (2005).

    Article  ADS  Google Scholar 

  21. A. E. Lobanov, Phys. Lett. B 619, 136 (2005).

    Article  ADS  Google Scholar 

  22. V. Cirigliano, G. M. Fuller, and A. Vlasenko, Phys. Lett. B 747, 27 (2015).

    Article  ADS  Google Scholar 

  23. A. Kartavtsev, G. Raffelt, and H. Vogel, Phys. Rev. D 91, 125020 (2015).

    Article  ADS  Google Scholar 

  24. V. N. Oraevskii, A. Yu. Plakhov, V. B. Semikoz, and Ya. A. Smorodinskii, Sov. Phys. JETP 66, 890 (1987).

    Google Scholar 

  25. V. B. Semikoz and Ya. A. Smorodinskii, Sov. Phys. JETP 68, 20 (1989).

    Google Scholar 

  26. J. F. Nieves and P. B. Pal, Phys. Rev. D 40, 1693 (1989).

    Article  ADS  Google Scholar 

  27. J. C. D’Olivo, J. F. Nieves, and P. B. Pal, Phys. Rev. D 40, 3679 (1989).

    Article  ADS  Google Scholar 

  28. T. Altherr and K. Kainulainen, Phys. Lett. B 262, 79 (1991).

    Article  ADS  Google Scholar 

  29. V. N. Oraevsky, V. B. Semikoz, and Ya. A. Smorodinskii, Phys. Part. Nucl. 25, 129 (1994).

    Google Scholar 

  30. V. N. Oraevsky, V. B. Semikoz, and Ya. A. Smorodinskii, JETP Lett. 43, 709 (1986).

  31. V. N. Oraevsky and V. B. Semikoz, Physica A 142, 135 (1987).

    Article  ADS  Google Scholar 

  32. J. F. Nieves and P. B. Pal, Phys. Rev. D 49, 1398 (1994).

    Article  ADS  Google Scholar 

  33. T. Altherr and P. Salati, Nucl. Phys. B 421, 662 (1994).

    Article  ADS  Google Scholar 

  34. V. B. Semikoz, Sov. J. Nucl. Phys. 46, 946 (1987).

    Google Scholar 

  35. L. B. Leinson and V. N. Oraevsky, JETP Lett. 48, 60 (1988).

    ADS  Google Scholar 

  36. S. Pastor, V. B. Semikoz, and J. W. F. Valle, Astropart. Phys. 3, 87 (1995).

    Article  ADS  Google Scholar 

  37. S. Pastor, V. B. Semikoz, and J. W. F. Valle, Phys. Lett. B 369, 301 (1996).

    Article  ADS  Google Scholar 

  38. H. Kikuchi, Prog. Theor. Phys. 95, 543 (1996).

    Article  ADS  Google Scholar 

  39. V. B. Semikoz and J. W. F. Valle, Nucl. Phys. B 425, 651 (1994), Nucl. Phys. B 485, 545(E) (1997).

    Article  ADS  Google Scholar 

  40. P. Elmfors, D. Grasso, and G. Raffelt, Nucl. Phys. B 479, 3 (1996).

    Article  ADS  Google Scholar 

  41. A. Erdas, C. W. Kim, and T. H. Lee, Phys. Rev. D 58, 085016 (1998).

    Article  ADS  Google Scholar 

  42. J. C. D’Olivo and J. F. Nieves, Phys. Lett. B 383, 87 (1996).

    Article  ADS  Google Scholar 

  43. S. Esposito and G. Capone, Z. Phys. C 70, 55 (1996).

  44. P. K. Shukla and L. Stenflo, Phys. Lett. B 425, 126 (1998).

    Article  ADS  Google Scholar 

  45. S. Sahu and V. M. Bannur, Phys. Rev. D 61, 023003 (1999).

    Article  ADS  Google Scholar 

  46. A. Bravo García, K. Bhattacharya, and S. Sahu, Mod. Phys. Lett. A 23, 2771 (2008).

    Article  ADS  Google Scholar 

  47. A. Kusenko and G. Segrè, Phys. Rev. Lett. 77, 4872 (1996).

    Article  ADS  Google Scholar 

  48. A. Dobrynina, A. Kartavtsev, and G. Raffelt, arXiv:hep-ph/1605.04512v1 (2016).

  49. D. Nötzold and G. Raffelt, Nucl. Phys. B 307, 924 (1988).

    Article  ADS  Google Scholar 

  50. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Fizmatlit, Moscow, 2002, Pergamon, Oxford, 1982).

    Google Scholar 

  51. D. M. Fradkin and R. H. Good, Rev. Mod. Phys. 33, 343 (1961).

    Article  ADS  Google Scholar 

  52. A. A. Sokolov and I. M. Ternov, Radiation from Relativistic Electron, 2nd ed. (Nauka, Moscow, 1983; American Institute of Physics, New York, 1986).

    MATH  Google Scholar 

  53. A. V. Borisov, V. Ch. Zhukovskii, and A. I. Ternov, Preprint MSU No. 6/1985 (Phys. Dep., Lomonosov Moscow State Univ., 1985).

    Google Scholar 

  54. A. V. Borisov, V. Ch. Zhukovskii, and A. I. Ternov, Sov. Phys. J. 31, 228 (1988).

    Article  Google Scholar 

  55. E. V. Arbuzova, A. E. Lobanov, and E. M. Murchikova, Phys. Rev. D 81, 045001 (2010).

    Article  ADS  Google Scholar 

  56. I. M. Ternov, V. G. Bagrov, and A. M. Khapaev, Sov. Phys. JETP 21, 613 (1965).

    ADS  Google Scholar 

  57. K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

    Article  Google Scholar 

  58. A. Yu. Potekhin, Phys. Usp. 53, 1235 (2010).

    Article  ADS  Google Scholar 

  59. Synchrotron Radiation Theory and Its Development. In memory of I. M. Ternov, Ed. by V. A. Bordovitsyn (World Scientific, Singapore, 1999).

  60. V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lett. 2, 435 (1959).

    Article  ADS  Google Scholar 

  61. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, N.Y., London, 1999).

    MATH  Google Scholar 

  62. A. E. Lobanov, J. Phys. A 39, 7517 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  63. I. M. Ternov, V. R. Khalilov, and O. S. Pavlova, Sov. Phys. J. 21, 1593 (1978).

    Article  Google Scholar 

  64. I. M. Ternov, Sov. Phys. JETP 71, 654 (1990).

    Google Scholar 

  65. M. Dvornikov and A. Studenikin, JHEP 09, 016 (2002).

    Article  ADS  Google Scholar 

  66. E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys.- Math. Klasse 24, 418 (1930).

    Google Scholar 

  67. W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik (Springer, Berlin Heidelberg, 1990).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ternov.

Additional information

Original Russian Text © A.I. Ternov, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 2, pp. 75–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ternov, A.I. Neutrino induced magnetic moment and spin precession. Jetp Lett. 104, 75–81 (2016). https://doi.org/10.1134/S0021364016140137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016140137

Navigation