Skip to main content
Log in

Unidirectional anisotropy of the resistivity in 112-type EuBaCo2O5.5 cobaltite

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It is found that the resistivity of EuBaCo2O5.5 depends not only on the magnitude of an applied magnetic field but also on its sign. This phenomenon is new for cobalt and manganese oxides. The symmetric or shifted hysteresis loops (depending on the cooling method) for the resistivity correspond to similar loops for the magnetization. The angular dependence of the resistivity is described by the relation Δρ ~ sinθ, where the angle θ = 0 corresponds to the direction of magnetization, at which the sample has been cooled. The results are interpreted in terms of the exchange interaction between the ferromagnetic (FM) and antiferromagnetic (AFM) phases. At the cyclic variation of temperature or magnetic field, the resistivity of EuBaCo2O5.5 increases and does not return to the initial state. The metastable state of EuBaCo2O5.5 is related to the kinetic phenomena accompanying the first order FM–AFM phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, and B. Raveau, Appl. Phys. Lett. 71, 1421 (1997).

    Article  ADS  Google Scholar 

  2. A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, and B. Raveau, J. Solid State Chem. 142, 247 (1999).

  3. J. Wu and C. Leighton, Phys. Rev. B 67, 174408 (2003).

    Article  ADS  Google Scholar 

  4. J. Wu, J. W. Lynn, C. J. Glinka, J. Burley, H. Zheng, J. F. Mitchell, and C. Leighton, Phys. Rev. Lett. 94, 037201 (2005).

    Article  ADS  Google Scholar 

  5. V. A. Ryzhov, A. V. Lazuta, P. L. Molkanov, V. P. Khavroni, A. I. Kurbakov, V. V. Runov, Ya. M. Mukovskii, A. E. Pestun, and R. V. Privezentsev, J. Magn. Magn. Mater. 324, 3432 (2012).

    Article  ADS  Google Scholar 

  6. V. A. Ryzhov, A. V. Lazuta, V. P. Khavronin, P. L. Molkanov, Ya. M. Mukovskii, and A. E. Pestun, Phys. Solid State 56, 68 (2014).

    Article  ADS  Google Scholar 

  7. N. I. Solin, J. Magn. Magn. Mater. 401, 677 (2016).

    Article  ADS  Google Scholar 

  8. A. A. Taskin, A. N. Lavrov, and Y. Ando, Phys. Rev. B 71, 134414 (2005).

    Article  ADS  Google Scholar 

  9. I. O. Troyanchuk, N. V. Kasper, D. D. Khalyavin, H. Szymczak, and M. Baran, Phys. Rev. Lett. 80, 3380 (1998).

    Article  ADS  Google Scholar 

  10. Y. Tokura, H. Kuwahara, Y. Moritomo, Y. Tomioka, and A. Asamitsu, Phys. Rev. Lett. 76, 3184 (1996).

    Article  ADS  Google Scholar 

  11. Z. X. Zhou, S. McCall, C. S. Alexandern, J. E. Crow, P. Schlottmann, S. N. Barilo, S. V. Shiryaev, G. L. Bychkov, and R. P. Guertin, Phys. Rev. B 70, 024425 (2004).

    Article  ADS  Google Scholar 

  12. B. Raveau, Ch. Simon, V. Pralong, V. Caignaert, and F.-X. Lefèvre, Solid State Commun. 139, 301 (2006).

  13. W. H. Meikljohn and C. P. Bean, Phys. Rev. 105, 904 (1957).

    Article  ADS  Google Scholar 

  14. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).

    Google Scholar 

  15. K. B. Vlasov and A. I. Mitsek, Fiz. Met. Metalloved. 14, 487 (1962).

    Google Scholar 

  16. K. B. Vlasov, N. V. Volkenshtein, S. V. Vonsovskii, A. I. Mitsek, and M. I. Turchinskaya, Izv. Akad. Nauk SSSR, Ser. Fiz. 28, 423 (1964).

    Google Scholar 

  17. S. V. Telegin, S. V. Naumov, O. G. Reznitskikh, and E. I. Patrakov, Phys. Solid State 57, 2290 (2015).

    Article  ADS  Google Scholar 

  18. T. I. Arbuzova, S. V. Telegin, S. V. Naumov, E. I. Patrakov, and O. G. Reznitskih, Solid State Phenom. 215, 83 (2014).

    Article  Google Scholar 

  19. V. Hardy, S. Majumdar, S. J. Crowe, M. R. Lees, D.McK. Paul, L. Hervé, A. Maignan, S. Hébert, C. Martin, C. Yaicle, M. Hervieu, and B. Raveau, Phys. Rev. B 69, 020407(R) (2004).

    Article  ADS  Google Scholar 

  20. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. 31, 44 (1973).

    ADS  Google Scholar 

  21. R. Mahendiran and A. K. Raychaudhuri, Phys. Rev. B 54, 16044 (1996).

    Article  ADS  Google Scholar 

  22. N. I. Solin, JETP Lett. 91, 675 (2010).

    Article  ADS  Google Scholar 

  23. N. I. Solin, J. Exp. Theor. Phys. 114, 96 (2012).

    Article  ADS  Google Scholar 

  24. T. Sarkar, V. Pralong, and B. Raveau, Phys. Rev. B 83, 214428 (2011).

    Article  ADS  Google Scholar 

  25. P. Chaddah, K. Kumar, and A. Banerjee, Phys. Rev. B 77, 100402(R) (2008).

    Article  ADS  Google Scholar 

  26. R. Mahendiran, B. Raveau, M. Hervieu, C. Michel, and A. Maignan, Phys. Rev. B 64, 064424 (2001).

    Article  ADS  Google Scholar 

  27. S. L. Ginzburg, Irreversible Phenomena in Spin Glasses (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  28. R. Caciuffo, D. Rinaldi, and G. Barucca, Phys. Rev. B 59, 1068 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Solin.

Additional information

Original Russian Text © N.I. Solin, S.V. Naumov, S.V. Telegin, A.V. Korolev, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 1, pp. 44–51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solin, N.I., Naumov, S.V., Telegin, S.V. et al. Unidirectional anisotropy of the resistivity in 112-type EuBaCo2O5.5 cobaltite. Jetp Lett. 104, 49–55 (2016). https://doi.org/10.1134/S0021364016130142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016130142

Navigation