Skip to main content
Log in

53Cr NMR study of CuCrO2 multiferroic

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61–66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2t del–τπt del–echo. The spin–spin and spin–lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kadowaki, H. Kikuchi, and Y. Ajiro, J. Phys.: Condens. Matter 2, 4485 (1990).

    ADS  Google Scholar 

  2. K. Kimura, H. Nakamura, K. Ohgushi, and T. Kimura, Phys. Rev. B 78, 140401 (2008).

    Article  ADS  Google Scholar 

  3. M. Soda, K. Kimura, T. Kimura, M. Matsuura, and K. Hirota, J. Phys. Soc. Jpn. 78, 124703 (2009).

    Article  ADS  Google Scholar 

  4. M. Frontzek, G. Ehlers, A. Podlesnyak, H. Cao, M. Matsuda, O. Zaharko, N. Aliouane, S. Barilo, and S. Shiryaev, J. Phys.: Condens. Matter 24, 016004 (2012).

    ADS  Google Scholar 

  5. M. Poienar, F. Damay, C. Martin, V. Hardy, A. Maignan, and G. Andre, Phys. Rev. B 79, 014412 (2009).

    Article  ADS  Google Scholar 

  6. M. Poienar, F. Damay, C. Martin, J. Robert, and S. Petit, Phys. Rev. B 81, 104411 (2010).

    Article  ADS  Google Scholar 

  7. Yu. Sakhratov, L. Svistov, P. Kuhns, H. Zhou, and A. Reyes, J. Exp. Theor. Phys. 119, 880 (2014).

    Article  ADS  Google Scholar 

  8. S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 067204 (2008).

    Article  ADS  Google Scholar 

  9. K. Kimura, H. Nakamura, S. Kimura, M. Hagiwara, and T. Kimura, Phys. Rev. Lett. 103, 107201 (2009).

    Article  ADS  Google Scholar 

  10. M. Soda, K. Kimura, T. Kimura, and K. Hirota, Phys. Rev. B 81, 100406 (2010).

    Article  ADS  Google Scholar 

  11. A. Borovik-Romanov, C. Petrov, A. Tikhonov, and S. Dumesh, J. Exp. Theor. Phys. 86, 197 (1998).

    Article  ADS  Google Scholar 

  12. A. Freeman and R. Frankel, Hyperfine Interactions (Academic, New York, London, 1967).

    Google Scholar 

  13. J. Xue-Fan, L. Xian-Feng, W. Yin-Zhong, and H. Jiu-Rong, Chin. Phys. B 21, 077502 (2012).

    Article  ADS  Google Scholar 

  14. M. Rubinstein, G. Stauss, and J. Krebs, Phys. Lett. 12, 302 (1964).

    Article  ADS  Google Scholar 

  15. E. Jedryka, S. Nadolski, and M. Wojcik, J. Magn. Magn. Mater. 40, 303 (1984).

    Article  ADS  Google Scholar 

  16. R. W. Terhune, J. Lambe, C. Kikuchi, and J. Baker, Phys. Rev. 123, 1265 (1961).

    Article  ADS  Google Scholar 

  17. G. Allodi, R. de Renzi, and G. Guidi, Phys. Rev. B 56, 6036 (1997).

    Article  ADS  Google Scholar 

  18. C. M. Casadei, L. Bordonali, Y. Furukawa, F. Borsa, E. Garlatti, A. Lascialfari, S. Carretta, S. Sanna, G. Timco, and R. Winpenny, J. Phys.: Condens. Matter 24, 406002 (2012).

    ADS  Google Scholar 

  19. H. Yamaguchi, S. Otomo, S. Kimura, M. Hagiwara, K. Kimura, T. Kimura, and K. Kindo, J. Low Temp. Phys. 159, 130 (2010).

    Article  ADS  Google Scholar 

  20. A. Sadykov, A. Gerashchenko, Yu. Piskunov, V. Ogloblichev, A. Smol’nikov, S. Verkhovskii, A. Yakubovskii, E. Tishchenko, and A. Bush, J. Exp. Theor. Phys. 115, 666 (2012).

    Article  ADS  Google Scholar 

  21. A. Sadykov, A. Gerashchenko, Yu. Piskunov, V. Ogloblichev, A. Smol’nikov, S. Verkhovskii, A. Buzlukov, I. Arapova, Y. Furukawa, A. Yakubovskii, and A. Bush, J. Exp. Theor. Phys. 119, 870 (2014).

    Article  ADS  Google Scholar 

  22. R. Blinc, Phys. Rep. 79, 331 (1981).

    Article  ADS  Google Scholar 

  23. K. Kimura, T. Otani, H. Nakamura, Y. Wakabayas, and T. Kimura, J. Phys. Soc. Jpn. 78, 113710 (2009).

    Article  ADS  Google Scholar 

  24. J. H. Shim, S. Lee, J. Dho, and D.-H. Kim, Phys. Rev. Lett. 99, 057209 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ogloblichev.

Additional information

Original Russian Text © A.G. Smol’nikov, V.V. Ogloblichev, S.V. Verkhovskii, K.N. Mikhalev, A.Yu. Yakubovskii, K. Kumagai, Y. Furukawa, A.F. Sadykov, Yu.V. Piskunov, A.P. Gerashchenko, S.N. Barilo, S.V. Shiryaev, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 102, No. 10, pp. 766–769.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smol’nikov, A.G., Ogloblichev, V.V., Verkhovskii, S.V. et al. 53Cr NMR study of CuCrO2 multiferroic. Jetp Lett. 102, 674–677 (2015). https://doi.org/10.1134/S0021364015220105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015220105

Keywords

Navigation