Skip to main content
Log in

Analytical representation of the relations of inertial diffusion transport

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A generalized approach has been proposed to describe the diffusive transport of inertial particles at which the known inertialess relations (in particular, between the concentration of particles and the corresponding flux) are supplemented by a factor allowing the calculation of inertial effects in terms of the matrix continued fraction method. The advantage of this approach, which is in the analytical representation of the results, is illustrated by solving the problem of the determination of the effective diffusion coefficient of an inertial particle in a sawtooth potential and the average velocity of the adiabatic inertial ratchet. The character of the nonanalytic behavior of these quantities in the presence of large gradients of the potential has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. von Smoluchowski, Ann. Phys. 48, 1103 (1915).

    Google Scholar 

  2. H. Riskin, The Fokker–Plank Equation. Methods of Solution and Applications (Springer, Berlin, 1989).

    Google Scholar 

  3. O. Klein, Ark. Mat., Astron. Fys. 16 (5), 1 (1922).

    Google Scholar 

  4. H. A. Kramers, Physica 7, 284 (1940).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. V. I. Mel’nikov and S. V. Meshkov, J. Chem. Phys. 85, 1018 (1986).

    Article  ADS  Google Scholar 

  6. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).

    Article  ADS  Google Scholar 

  7. V. I. Mel’nikov, Phys. Rep. 209, 1 (1991).

    Article  ADS  Google Scholar 

  8. V. I. Mel’nikov, JETP Lett. 40, 787 (1984).

    ADS  Google Scholar 

  9. W. T. Coffey and Yu. P. Kalmykov, The Langevin Equation, 3rd ed. (World Scientific, Singapore, 2012), Chap. 12

    Book  MATH  Google Scholar 

  10. W. L. Reenbohn and M. C. Mahato, J. Stat. Mech.: Theor. Exp., P03011 (2009).

    Google Scholar 

  11. S. Saikia and M. C. Mahato, Phys. Rev. E 80, 062102 (2009).

    Article  ADS  Google Scholar 

  12. W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, Eur. Phys. J. Spec. Top. 222, 1847 (2013).

    Article  Google Scholar 

  13. R. L. Stratonovich, Radiotekh. Elektron. 4, 497 (1958).

    Google Scholar 

  14. J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998).

    Article  ADS  Google Scholar 

  15. V. M. Rozenbaum, I. V. Shapochkina, and T. E. Korochkova, JETP Lett. 98, 568 (2013).

    Article  ADS  Google Scholar 

  16. V. M. Rozenbaum, Yu. A. Makhnovskii, I. V. Shapochkina, S.-Y. Sheu, D.-Y. Yang, and S. H. Lin, Phys. Rev. E 89, 052131 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Rozenbaum.

Additional information

Original Russian Text © V.M. Rozenbaum, I.V. Shapochkina, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheckoi Fiziki, 2015, Vol. 102, No. 4, pp. 275–280.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozenbaum, V.M., Shapochkina, I.V. Analytical representation of the relations of inertial diffusion transport. Jetp Lett. 102, 248–253 (2015). https://doi.org/10.1134/S0021364015160110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015160110

Keywords

Navigation