Skip to main content
Log in

Evidence on the macroscopic length scale spin coherence for the edge currents in a narrow HgTe quantum well

In memory of V.F. Gantmakher

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We experimentally investigate spin-polarized electron transport between two ferromagnetic contacts, placed at the edge of a two-dimensional electron system with band inversion. The system is realized in a narrow (8 nm) HgTe quantum well, the ferromagnetic side contacts are formed from a premagnetized permalloy film. In zero magnetic field, we find a significant edge current contribution to the transport between two ferromagnetic contacts. We experimentally demonstrate that this transport is sensitive to the mutual orientation of the magnetization directions of two 200 µm-spaced ferromagnetic leads. This is a direct experimental evidence on the spin-coherent edge transport over the macroscopic distances. Thus, the spin is extremely robust at the edge of a two-dimensional electron system with band inversion, confirming the helical spin-resolved nature of edge currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. König, S. Wiedmann, C. Brne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).

    Article  ADS  Google Scholar 

  2. G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, S. A. Dvoretsky, and J. C. Porta, Phys. Rev. B 84, 121302(R) (2011).

  3. M. Büttiker, Phys. Rev. B 38, 9375 (1988).

    Article  ADS  Google Scholar 

  4. A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Science 325, 294 (2009).

    Article  ADS  Google Scholar 

  5. G. M. Gusev, E. B. Olshanetsky, Z. D. Kvon, O. E. Raichev, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 88, 195305 (2013).

    Article  ADS  Google Scholar 

  6. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).

    ADS  Google Scholar 

  7. S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. Lett. 93, 156804 (2004).

    Article  ADS  Google Scholar 

  8. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  9. B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).

    Article  ADS  Google Scholar 

  10. K. C. Nowack, E. M. Spanton, M. Baenninger, M. König, J. R. Kirtley, B. Kalisky, Ch. Ames, Ph. Leubner, Ch. Brüne, H. Buhmann, L. W. Molenkamp, D. Goldhaber-Gordon, and K. A. Moler, Nature Mater. 12, 787 (2013).

    Article  ADS  Google Scholar 

  11. C. Brüne, A. Roth, H. Buhmann, E. M. Hankiewicz, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Nature Phys. 8, 485 (2012).

    Article  ADS  MATH  Google Scholar 

  12. I. Adagideli, G. E. W. Bauer, and B. I. Halperin, Phys. Rev. Lett. 97, 256601 (2006).

    Article  ADS  Google Scholar 

  13. X.-L. Qi, T. L. Hughes, and Sh.-Ch. Zhang, Nature Phys. 4, 273 (2008).

    Article  Google Scholar 

  14. A. Kononov, S. V. Egorov, G. Biasiol, L. Sorba, and E. V. Deviatov, Phys. Rev. B 89, 075312 (2014).

    Article  ADS  Google Scholar 

  15. Z. D. Kvon, E. B. Olshanetsky, D. A. Kozlov, N. N. Mikhailov, and S. A. Dvoretsky, JETP Lett. 87, 502 (2008).

    Article  ADS  Google Scholar 

  16. E. B. Olshanetsky, Z. D. Kvon, N. N. Mikhailov, E. G. Novik, I. O. Parm, and S. A. Dvoretsky, Solid State Commun. 152, 265 (2012).

    Article  ADS  Google Scholar 

  17. A. M. Lunde and G. Platero, Phys. Rev. B 86, 035112 (2012).

    Article  ADS  Google Scholar 

  18. G. M. Gusev, Z. D. Kvon, E. B. Olshanetsky, A. D. Levin, Y. Krupko, J. C. Portal, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 89, 125305 (2014).

    Article  ADS  Google Scholar 

  19. D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Phys. Rev. B 46, 4026 (1992).

    Article  ADS  Google Scholar 

  20. E. Ahlswede, J. Weis, K.v. Klitzing, and K. Eberl, Physica E 12, 165 (2002).

    Article  ADS  Google Scholar 

  21. R. J. Haug, Semicond. Sci. Technol. 8, 131 (1993).

    Article  ADS  Google Scholar 

  22. O. E. Raichev, Phys. Rev. B 85, 045310 (2012).

    Article  ADS  Google Scholar 

  23. T. Yokoyama, Y. Tanaka, and N. Nagaosa, Phys. Rev. Lett. 102, 166801 (2009).

    Article  ADS  Google Scholar 

  24. M. Guigou, P. Rechter, J. Cayssol, and B. Trauzettel, Phys. Rev. B 84, 094534 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kononov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononov, A., Egorov, S.V., Kvon, Z.D. et al. Evidence on the macroscopic length scale spin coherence for the edge currents in a narrow HgTe quantum well. Jetp Lett. 101, 814–819 (2015). https://doi.org/10.1134/S0021364015120115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015120115

Keywords

Navigation