Skip to main content
Log in

Properties of electrons scattered by a strong plane electromagnetic wave with a linear polarization: Semiclassical treatment

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982).

    Google Scholar 

  2. V. I. Ritus, J. Sov. Laser Res. 6, 497 (1985).

    Article  Google Scholar 

  3. www.eli-laser.eu.

  4. www.xcels.iapras.ru.

  5. E. Hemsing, G. Stupakov, D. Xiang, and A. Zholents, Rev. Mod. Phys. 86, 897 (2014).

    Article  ADS  Google Scholar 

  6. C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, W. Ragg, C. Bula, K. T. McDonald, E. J. Prebys, D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, and A. W. Weidemann, Phys. Rev. D 60, 092004 (1999).

    Article  ADS  Google Scholar 

  7. V. G. Bagrov, V. V. Belov, and A. Yu. Trifonov, Ann. Phys. (N.Y.) 246, 231 (1996); arXiv:quant-ph/9806017; Methods of Mathematical Physics: Asymptotic Methods in Relativistic Quantum Mechanics (Tomsk. Politekh. Univ., Tomsk, 2006) [in Russian].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. V. Krivitskii and V. Tsytovich, Sov. Phys. Usp. 34, 250 (1991); Ph. R. Johnson and B. L. Hu, Phys. Rev. D 65, 065015 (2002).

    Article  ADS  Google Scholar 

  9. H. A. Lorentz, Theory of Electrons (B. G. Teubner, Leipzig, 1909).

  10. P. A. M. Dirac, Proc. R. Soc. London A 167, 148 (1938).

    Article  ADS  Google Scholar 

  11. A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1964).

    Google Scholar 

  12. F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading, MA, 1965).

    MATH  Google Scholar 

  13. N. P. Klepikov, Sov. Phys. Usp. 28, 506 (1985).

    Article  ADS  Google Scholar 

  14. H. Spohn, Dynamics of Charged Particles and Their Radiation Field (Cambridge Univ. Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  15. B. P. Kosyakov, Theor. Math. Phys. 199, 493 (1999); P. O. Kazinski, S. L. Lyakhovich, and A. A. Sharapov, Phys. Rev. D 66, 025017 (2002).

    Article  Google Scholar 

  16. P. O. Kazinski and A. A. Sharapov, Theor. Math. Phys. 143, 798 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. A. Sokolov and I. M. Ternov, Radiation from Relativistic Electrons (American Institute of Physics, New York, 1986).

    Google Scholar 

  18. P. O. Kazinski, Ann. Phys. (Amsterdam) 339, 430 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. O. Kazinski and M. A. Shipulya, Phys. Rev. E 83, 066606 (2011).

    Article  ADS  Google Scholar 

  20. I. M. Ternov, V. G. Bagrov, and A. M. Khapaev, Ann. Phys. (Leipzig) 477, 25 (1968).

    Article  ADS  Google Scholar 

  21. D. V. Karlovets, Phys. Rev. A 84, 062116 (2011).

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1962).

    MATH  Google Scholar 

  23. F. V. Hartemann, D. J. Gibson, and A. K. Kerman, Phys. Rev. E 72, 026502 (2005).

    Article  ADS  Google Scholar 

  24. A. di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 102, 254802 (2009).

    Article  ADS  Google Scholar 

  25. Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Klier, and H. Ruhl, Phys. Rev. D 82, 096012 (2010).

    Article  ADS  Google Scholar 

  26. C. Harvey, T. Heinzl, and M. Marklund, Phys. Rev. D 84, 116005 (2011).

    Article  ADS  Google Scholar 

  27. A. di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

    Article  ADS  Google Scholar 

  28. T. Schlegel and V. T. Tikhonchuk, New J. Phys. 14, 073034 (2012).

    Article  ADS  Google Scholar 

  29. A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, Phys. Rev. Lett. 113, 014801 (2014).

    Article  ADS  Google Scholar 

  30. L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, Phys. Rev. Lett. 112, 145003 (2014).

    Article  ADS  Google Scholar 

  31. A. M. Fedotov, N. V. Elkina, E. G. Gelfer, N. B. Narozhny, and H. Ruhl, arXiv:1408.0362.

  32. A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, Phys. Rev. Lett. 88, 185002 (2002).

    Article  ADS  Google Scholar 

  33. N. Neitz and A. di Piazza, Phys. Rev. Lett. 111, 054802 (2013).

    Article  ADS  Google Scholar 

  34. N. V. Elkina, A. M. Fedotov, C. Herzing, and H. Ruhl, Phys. Rev. E 89, 053315 (2014).

    Article  ADS  Google Scholar 

  35. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, Opt. Express 16, 2109 (2008).

    Article  ADS  Google Scholar 

  36. W. H. Kegel, H. Herold, H. Ruder, and R. Leinemann, Astron. Astrophys. 297, 369 (1995).

    ADS  Google Scholar 

  37. A. I. Nikishov, J. Exp. Theor. Phys. 83, 274 (1996).

    ADS  MathSciNet  Google Scholar 

  38. A. di Piazza, Lett. Math. Phys. 83, 305 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. M. Tamburini, C. H. Keitel, and A. Di Piazza, Phys. Rev. E 89, 021201(R) (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Kazinski.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, O.V., Kazinski, P.O. Properties of electrons scattered by a strong plane electromagnetic wave with a linear polarization: Semiclassical treatment. Jetp Lett. 101, 206–214 (2015). https://doi.org/10.1134/S0021364015030030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015030030

Keywords

Navigation