Skip to main content
Log in

Inclusion of effects of self-consistency of the electron density within the LDA + U + SO method implemented in the temperature Green’s function formalism in the basis of the Wannier functions

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The LDA + U + SO method (local electron density approximation + Coulomb correlations taken into account in the static mean field limit + spin-orbit interaction) has been formulated and implemented in computer codes in the temperature Green’s function formalism in the basis of the Wannier functions. A formula for the approximate inclusion of the effect of self-consistency of the electron density on the parameters of the Hamiltonian has been proposed. It has been shown that the results obtained for NiO, GdNi2, Pu, and US by this method are in good agreement with the results obtained by methods with the complete self-consistency of the electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  2. A. O. Shorikov, A. V. Lukoyanov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. B 72, 024458 (2005).

    Article  ADS  Google Scholar 

  3. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

    Article  ADS  Google Scholar 

  4. V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

    Article  ADS  Google Scholar 

  5. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

    Article  ADS  Google Scholar 

  6. V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B 71, 125119 (2005).

    Article  ADS  Google Scholar 

  7. I. V. Solovyev, Z. V. Pchelkina, and V. I. Anisimov, Phys. Rev. B 75, 045110 (2007).

    Article  ADS  Google Scholar 

  8. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).

    ADS  Google Scholar 

  9. T. Fujiwara and M. Korotin, Phys. Rev. B 59, 9903 (1999).

    Article  ADS  Google Scholar 

  10. M. A. Korotin, Z. V. Pchelkina, N. A. Skorikov, E. Z. Kurmaev, and V. I. Anisimov, J. Phys.: Condens. Matter 26, 115501 (2014).

    Google Scholar 

  11. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  ADS  Google Scholar 

  12. G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984).

    Article  ADS  Google Scholar 

  13. R. J. Powell and W. E. Spicer, Phys. Rev. B 2, 2182 (1970).

    Article  ADS  Google Scholar 

  14. H. A. Alperin, J. Phys. Soc. Jpn. Suppl. B 17, 12 (1962).

    Google Scholar 

  15. B. E. F. Fender, A. J. Jacobson, and F. A. Wedgwood, J. Chem. Phys. 48, 990 (1968).

    Article  ADS  Google Scholar 

  16. A. K. Cheetham and D. A. O. Hope, Phys. Rev. B 27, 6964 (1983).

    Article  ADS  Google Scholar 

  17. H. Park, A. J. Millis, and C. A. Marianetti, arXiv:1409.4135.

  18. J. Kuneš, V. I. Anisimov, A. V. Lukoyanov, and D. Vollhardt, Phys. Rev. B 75, 165115 (2007).

    Article  ADS  Google Scholar 

  19. Dm. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N. Binggeli, V. I. Anisimov, and G. Trimarchi, Eur. Phys. J. B 65, 91 (2008).

    Article  ADS  Google Scholar 

  20. M. T. Czy yk and G. A. Sawatzky, Phys. Rev. B 49, 14211 (1994).

    Article  ADS  Google Scholar 

  21. A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein, Phys. Rev. B 67, 153106 (2003).

    Article  ADS  Google Scholar 

  22. M. Karolak, G. Ulma, T. Wehling, V. Mazurenko, A. Poteryaev, and A. Lichtenstein, J. Electron Spectr. Relat. Phenom. 181, 11 (2010).

    Article  Google Scholar 

  23. A. K. McMahan, K. Held, and R. T. Scalettar, Phys. Rev. B 67, 075108 (2003).

    Article  ADS  Google Scholar 

  24. A. O. Shorikov, J. E. Medvedeva, A. I. Poteryaev, V. V. Mazurenko, and V. I. Anisimov, JETP Lett. 91, 486 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Korotin.

Additional information

Original Russian Text © M.A. Korotin, N.A. Skorikov, S.L. Skornyakov, A.O. Shorikov, V.I. Anisimov, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 100, No. 12, pp. 929–934.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotin, M.A., Skorikov, N.A., Skornyakov, S.L. et al. Inclusion of effects of self-consistency of the electron density within the LDA + U + SO method implemented in the temperature Green’s function formalism in the basis of the Wannier functions. Jetp Lett. 100, 823–828 (2015). https://doi.org/10.1134/S0021364014240084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014240084

Keywords

Navigation