Skip to main content
Log in

Nonequilibrium transport near the superconducting transition in TiN films

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The linear and nonlinear conductions of titanium nitride films with the thickness d ≤ 10 nm have been studied experimentally in the region of superconducting transitions. It has been shown that the inclusion of all quantum contributions to the conductivity at temperatures above the critical temperature of the superconducting transition T c makes it possible to completely describe the temperature dependence of the conductivity measured in the linear regime, and the nonlinear behavior of the current-voltage characteristics is in complete agreement with the classical model of the heating of an electron gas in metals. The electron-phonon coupling constant has been determined. The analysis of the linear and nonlinear conductivities at temperatures below T c shows that the transition to a superconducting state occurs through the Berezinskii-Kosterlitz-Thouless mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).

    Article  ADS  Google Scholar 

  2. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1971).

    ADS  MathSciNet  Google Scholar 

  3. V. L. Berezinskii, Sov. Phys. JETP 34, 610 (1972).

    ADS  Google Scholar 

  4. M. R. Beasley, J. E. Mooij, and T. P. Orlando, Phys. Rev. Lett. 42, 1165 (1979).

    Article  ADS  Google Scholar 

  5. B. I. Halperin and D. R. Nelson, J. Low. Temp. Phys. 36, 599 (1979).

    Article  ADS  Google Scholar 

  6. K. Epstein, A. M. Goldman, and A. M. Kadin, Phys. Rev. Lett. 47, 534 (1981).

    Article  ADS  Google Scholar 

  7. S. A. Wolf, D. U. Gubser, W. W. Fuller, J. C. Garland, and R. S. Newrock, Phys. Rev. Lett. 47, 1071 (1981).

    Article  ADS  Google Scholar 

  8. A. M. Kadin, K. Epstein, and A. M. Goldman, Phys. Rev. B 27, 6691 (1983).

    Article  ADS  Google Scholar 

  9. A. F. Hebard and A. T. Fiory, Phys. Rev. Lett. 50, 1603 (1983).

    Article  ADS  Google Scholar 

  10. A. T. Fiory, A. F. Hebard, and W. I. Glaberson, Phys. Rev. B 28, 5075 (1983).

    Article  ADS  Google Scholar 

  11. A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 54, 2155 (1985).

    Article  ADS  Google Scholar 

  12. A. F. Volkov and Sh. M. Kogan, Sov. Phys. Usp. 11, 881 (1969).

    Article  ADS  Google Scholar 

  13. A. Vl. Gurevich and R. G. Mints, Rev. Mod. Phys. 59, 941 (1987).

    Article  ADS  Google Scholar 

  14. D. Kalok, A. Bilušić, T. I. Baturina, A. Yu. Mironov, S. V. Postolova, A. K. Gutakovskii, A. V. Latyshev, V. M. Vinokur, and C. Strunk, J. Phys.: Conf. Ser. 400, 022042 (2012).

    ADS  Google Scholar 

  15. T. I. Baturina, S. V. Postolova, A. Yu. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, Europhys. Lett. 97, 17012 (2012).

    Article  ADS  Google Scholar 

  16. T. I. Baturina, D. Kalok, A. Bilušić, V. M. Vinokur, M. R. Baklanov, A. K. Gutakovskii, A. V. Latyshev, and C. Strunk, Appl. Phys. Lett. 102, 042601 (2013).

    Article  ADS  Google Scholar 

  17. S. V. Postolova, A. Yu. Mironov, and T. I. Baturina, Izv. Akad. Nauk, Ser. Fiz. 78, 6 (2014).

    Google Scholar 

  18. P. Patsalas, C. Charitidis, S. Logothetidis, C. A. Dimitriadis, and O. Valassiades, J. Appl. Phys. 86, 5296 (1999).

    Article  ADS  Google Scholar 

  19. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, Ed. by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985).

  20. A. Larkin and A. Varlamov, Theory of Fluctuations in Superconductors (Oxford Univ. Press, Oxford, 2005).

    Book  MATH  Google Scholar 

  21. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C: Solid State Phys. 15, 7367 (1982).

    Article  ADS  Google Scholar 

  22. A. M. Finkel’shtein, Sov. Phys. JETP 57, 97 (1983).

    Google Scholar 

  23. J. M. B. Lopes dos Santos and E. Abrahams, Phys. Rev. B 31, 172 (1985).

    Article  ADS  Google Scholar 

  24. S. Doniach and B. A. Huberman, Phys. Rev. Lett. 42, 1169 (1979).

    Article  ADS  Google Scholar 

  25. J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).

    Article  ADS  MATH  Google Scholar 

  26. J. Romijn, T. M. Klapwijk, M. J. Renne, and J. E. Mooij, Phys. Rev. B 26, 3648 (1982).

    Article  ADS  Google Scholar 

  27. F. C. Wellstood, C. Urbina, and J. Clarke, Appl. Phys. Lett. 54, 2599 (1989).

    Article  ADS  Google Scholar 

  28. P. M. Echternach, M. R. Thomas, C. M. Gould, and H. M. Bozler, Phys. Rev. B 46, 10339 (1992).

    Article  ADS  Google Scholar 

  29. M. V. Golubkov and G. E. Tsydynzhapov, JETP Lett. 71, 516 (2000).

    Article  ADS  Google Scholar 

  30. F. C. Wellstood, C. Urbina, and J. Clarke, Phys. Rev. B 49, 5942 (1994).

    Article  ADS  Google Scholar 

  31. V. F. Gantmakher, Rep. Prog. Phys. 37, 317 (1974).

    Article  ADS  Google Scholar 

  32. M. Yu. Reizer, Phys. Rev. B 40, 5411 (1989).

    Article  ADS  Google Scholar 

  33. A. Sergeev and V. Mitin, Phys. Rev. B 61, 6041 (2000).

    Article  ADS  Google Scholar 

  34. F. Giazotto, T. T. Heikkil78, 217 (2006).

    Google Scholar 

  35. A. Kardakova, M. Finkel, D. Morozov, V. Kovalyuk, P. An, C. Dunscombe, M. Tarkhov, P. Mauskopf, T. M. Klapwijk, and G. Goltsman, Appl. Phys. Lett. 103, 252602 (2013).

    Article  ADS  Google Scholar 

  36. A. Savin, J. Pekola, M. Prunnila, J. Ahopelto, and P. Kivinen, Phys. Scripta 114, 57 (2004).

    Article  Google Scholar 

  37. M. Ovadia, B. Sacépé, and D. Shahar, Phys. Rev. Lett. 102, 176802 (2009).

    Article  ADS  Google Scholar 

  38. N. Wang, F. C. Wellstood, B. Sadoulet, E. E. Haller, and J. Beeman, Phys. Rev. B 41, 3761 (1990).

    Article  ADS  Google Scholar 

  39. S. Marnieros, L. Bergé, A. Juillard, and L. Dumoulin, Phys. Rev. Lett. 84, 2469 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Postolova.

Additional information

Original Russian Text © S.V. Postolova, A.Yu. Mironov, T.I. Baturina, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 100, No. 10, pp. 719–725.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postolova, S.V., Mironov, A.Y. & Baturina, T.I. Nonequilibrium transport near the superconducting transition in TiN films. Jetp Lett. 100, 635–641 (2015). https://doi.org/10.1134/S0021364014220135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014220135

Keywords

Navigation