Skip to main content
Log in

Radial homogeneity of geodesic acoustic modes in ohmic discharges with low B in the T-10 tokamak

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electric potential oscillations in the hot plasma zone have been measured directly using a heavy ion beam probe at the frequencies of geodesic acoustic modes in the T-10 tokamak (the major and minor radii are R = 1.5 m and a = 0.3 m, respectively, and the toroidal magnetic field is B = 1.5–2.5 T). In discharges with the lowered magnetic field B = 1.55 T, the diagnostic beam can probe a rather wide radial plasma region (0.06 < r < 0.28 m). This made it possible to study the radial structure of geodesic acoustic modes. It has been shown that the frequency and amplitude of geodesic acoustic modes in the region under study are constant over the radius in the whole region of observation. Thus, it has been shown experimentally that the observed frequency of geodesic acoustic modes may not correspond to the predictions of the local theory (f∼ √T e ) in a wide radial range comparable with the plasma minor radius. The numerical simulation of the turbulence dynamics using the solution of Braginskii magnetohydrodynamic equations for a peripheral plasma has showed the formation of geodesic acoustic modes in the observed frequency range owing to the nonlinear interaction between broadband turbulence modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Winsor, J. L. Johnson, and J. M. Dawson, Phys. Fluids 11, 2448 (1968).

    Article  ADS  Google Scholar 

  2. A. Fujisawa, T. Ido, A. Shimizu, S. Okamura, K. Matsuoka, H. Iguchi, Y. Hamada, H. Nakano, S. Ohshima, K. Itoh, K. Hoshino, K. Shinohara, Y. Miura, Y. Nagashima, S.-I. Itoh, M. Shats, H. Xia, J. Q. Dong, L. W. Yan, K. J. Zhao, G. D. Conway, U. Stroth, A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, S. V. Perfilov, C. Hidalgo, G. R. Tynan, C. Holland, P. H. Diamond, G. R. McKee, R. J. Fonck, D. K. Guptaand, and P. M. Schoch, Nucl. Fusion 47, S718 (2007).

    Article  ADS  Google Scholar 

  3. A. V. Melnikov, V. A. Vershkov, L. G. Eliseev, S. A. Grashin, A. V. Gudozhnik, L. I. Krupnik, S. E. Lysenko, V. A. Mavrin, S. V. Perfilov, D. A. Shelukhin, S. V. Soldatov, M. V. Ufimtsev, A. O. Urazbaev, G. Van Oost, and L. G. Zimeleva, Plasma Phys. Control. Fusion 48, S87 (2006).

    Article  ADS  Google Scholar 

  4. Z. Yan, G. R. Mckee, J. A. Boedo, D. L. Rudakov, P. H. Diamond, G. Tynan, R. J. Fonck, R. J. Groebner, T. H. Osborne, and P. Gohil, Nucl. Fusion 53, 113038 (2013).

    Article  ADS  Google Scholar 

  5. W. W. Heidbrink, E. Ruskov, E. M. Carolipio, J. Fang, M. A. van Zeeland, and R. A. James, Phys. Plasmas 6, 1147 (1999).

    Article  ADS  Google Scholar 

  6. F. Zonca and L. Chen, Europhys. Lett. 83, 35001 (2008).

    Article  ADS  Google Scholar 

  7. A. I. Smolyakov, C. Nguyen, and X. Garbet, Nucl. Fusion 50, 054002 (2010).

    Article  ADS  Google Scholar 

  8. A. I. Smolyakov, X. Garbet, G. Falchetto, and M. Ottaviani, Phys. Lett. A 372, 6750 (2008).

    Article  ADS  MATH  Google Scholar 

  9. A. V. Melnikov, L. G. Eliseev, A. V. Gudozhnik, S. E. Lysenko, V. A. Mavrin, S. V. Perfilov, L. G. Zimeleva, M. V. Ufimtsev, L. I. Krupnik, and P. M. Schoch, Czech. J. Phys. 55, 349 (2005).

    Article  ADS  Google Scholar 

  10. A. D. Gurchenko, E. Z. Gusakov, A. B. Altukhov, E. P. Selyunin, L. A. Esipov, M. Yu. Kantor, D. V. Kouprienko, S. I. Lashkul, A. Yu. Stepanov, and F. Wagner, Plasma Phys. Control. Fusion 55, 085017 (2013).

    Article  ADS  Google Scholar 

  11. T. Ido, Y. Miura, K. Kamiya, Y. Hamada, K. Hoshino, A. Fujisawa, K. Itoh, S.-I. Itoh, A. Nishizawa, H. Ogawa, Y. Kusama, and JFT-2M group, Plasma Phys. Control. Fusion 48, S41 (2006).

    Article  ADS  Google Scholar 

  12. W. Chen, X. T. Ding, L. M. Yu, X. Q. Ji, Z. B. Shi, Y. P. Zhang, W. L. Zhong, G. L. Yuan, J. Q. Dong, Q. W. Yang, Yi. Liu, L. W. Yan, Y. Zhou, M. Jiang, W. Li, X. M. Song, S. Y. Chen, X. R. Duan, and the HL-2A team, Nucl. Fusion 53, 113010 (2013).

    Article  ADS  Google Scholar 

  13. G. D. Conway, C. Tröster, B. Scott, K. Hallatschek, and the ASDEX Upgrade Team, Plasma Phys. Control. Fusion 50, 055009 (2008).

    Article  ADS  Google Scholar 

  14. C. A. de Meijere, S. Coda, Z. Huang, L. Vermare, T. Vernay, V. Vuille, S. Brunner, J. Dominski, P. Hennequin, A. Krämer-Flecken, G. Merlo, L. Porte, and L. Villard, Plasma Phys. Control. Fusion 56, 072001 (2014).

    Article  ADS  Google Scholar 

  15. V. V. Bulanin, F. Wagner, V. I. Varfolomeev, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, D. V. Prisyazhnyuk, N. V. Sakharov, S. Yu. Tolstyakov, N. A. Khromov, P. B. Shchegolev, and A. Yu. Yashin, Tech. Phys. Lett. 40, 375 (2014).

    Article  ADS  Google Scholar 

  16. A. V. Melnikov, L. G. Eliseev, S. A. Grashin, A. V. Gudozhnik, S. E. Lysenko, V. A. Mavrin, S. V. Perfilov, S. V. Soldatov, D. A. Shelukhin, V. A. Vershkov, L. G. Zimeleva, M. V. Ufimtsev, L. I. Krupnik, A. D. Komarov, and A. S. Kozachek, 30th EPS Conference on Plasma Physics, St. Petersburg, 2003, Rep. P3-114; http://epsppd.epfl.ch/StPetersburg/PDF/P3-114.PDF.

  17. A. V. Melnikov, C. Hidalgo, L. G. Eliseev, E. Ascasibar, A. A. Chmyga, K. S. Dyabilin, I. A. Krasilnikov, V. A. Krupin, L. I. Krupnik, S. M. Khrebtov, A. D. Komarov, A. S. Kozachek, D. Lupez-Bruna, S. E. Lysenko, V. A. Mavrin, J. L. de Pablos, I. Pastor, S. V. Perfilov, M. A. Pedrosa, R. V. Shurygin, V. A. Vershkov, T-10 team, and TJ-II team, Nucl. Fusion 51, 083043 (2011).

    Article  ADS  Google Scholar 

  18. Yu. N. Dnestrovskij, A. V. Melnikov, L. I. Krupnik, and I. S. Nedzelskij, IEEE Trans. Plasma Science 22, 310 (1994).

    Article  ADS  Google Scholar 

  19. A. V. Melnikov, I. S. Bondarenko, S. L. Efremov, N. K. Kharchev, S. M. Khrebotv, L. I. Krupnik, I. S. Nedzelskij, L. G. Zimeleva, and Yu. V. Trofimenko, Rev. Sci. Instrum. 66, 317 (1995).

    Article  ADS  Google Scholar 

  20. A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, V. F. Andreev, S. A. Grashin, K. S. Dyabilin, A. N. Chudnovskiy, M. Yu. Isaev, S. E. Lysenko, V. A. Mavrin, M. I. Mikhailov, D. V. Ryzhakov, R. V. Shurygin, V. N. Zenin, and the T-10 Team, Nucl. Fusion 53, 093019 (2013).

    Article  ADS  Google Scholar 

  21. V. P. Lakhin and E. A. Sorokina, Phys. Lett. A 378, 535 (2014).

    Article  ADS  Google Scholar 

  22. V. I. Ilgisonis, I. V. Khalzov, V. P. Lakhin, A. I. Smolyakov, and E. A. Sorokina, Plasma Phys. Control. Fusion 56, 035001 (2014).

    Article  ADS  Google Scholar 

  23. R. V. Shurygin and A. A. Mavrin, Plasma Phys. Rep. 36, 535 (2010).

    Article  ADS  Google Scholar 

  24. R. V. Shurygin, Plasma Phys. Rep. 38, 93 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Melnikov.

Additional information

Original Russian Text © A.V. Melnikov, L.G. Eliseev, S.E. Lysenko, S.V. Perfilov, R.V. Shurygin, L.I. Krupnik, A.S. Kozachek, A.I. Smolyakov, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 100, No. 9, pp. 633–638.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, A.V., Eliseev, L.G., Lysenko, S.E. et al. Radial homogeneity of geodesic acoustic modes in ohmic discharges with low B in the T-10 tokamak. Jetp Lett. 100, 555–560 (2015). https://doi.org/10.1134/S0021364014210103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014210103

Keywords

Navigation