Skip to main content
Log in

Hexagonal spin structure of A-phase in MnSi: Densely packed skyrmion quasiparticles or two-dimensionally modulated spin superlattice?

  • Discussion
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We have studied in detail the A-phase region in the field-temperature (H-T) phase diagram of the cubic heli-magnet MnSi using small angle neutron diffraction. The A-phase revealed itself as a two-dimensional hexagonal pattern of Bragg spots with k h(1, 2, 3)H. The directions and magnitudes of the wave vectors k h(1, 2, 3) are well preserved over the whole crystal of the size of 100 mm3, but in the small room of the (H-T) phase diagram just below T c = 29 K. The droplets of the orientationally disordered, presumably hexagonal, spin structure with k h H are observed in the wide range beyond the A-phase boundaries in the field range from B T1 ≈ 0.1 T to B T2 ≈ 0.25 T at temperatures down to 15 K. No melting of these droplets into individual randomly located skyrmions is observed for all temperatures and magnetic fields. The wave vector of two-dimensional modulations k h is equal to the wave vector of the cone phase k c . We conclude that observable is a two dimensionally modulated hexagonal spin superlattice built on the same competition of interactions (ferromagnetic exchange and Dzyaloshinskii-Moriya interactions) similar to a case of one-dimensionally modulated simple spin spiral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ishikawa, K. Tajima, D. Bloch, and M. Roth, Solid State Commun. 19, 525 (1976).

    Article  ADS  Google Scholar 

  2. P. Bak and M. H. Jensen, J. Phys. C 13, L881 (1980).

    Article  ADS  Google Scholar 

  3. I. E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964).

    Google Scholar 

  4. Historically, the Dzyaloshinskii-Moria interaction was first introduced to explain the phenomenon of weak ferromagnetism in centrosymmetric crystals. Generally the presence/absence of DM interaction is associated with the local symmetry of the interatomic bonds and it leads to a spiral twist of the magnetic structure in magnets without inversion center.

  5. M. Tanaka, H. Takayoshi, M. Ishida, and Ya. Endoh, J. Phys. Soc. J. 54, 2970 (1985).

    Article  ADS  Google Scholar 

  6. M. Ishida, Ya. Endoh, S. Mitsuda, Yo. Ishikawa, and M. Tanaka, J. Phys. Soc. J. 54, 2975 (1985).

    Article  ADS  Google Scholar 

  7. S. Kusaka, K. Yamamoto, T. Komatsubara, and Y. Ishikawa, Solid State Commun. 20, 925 (1976).

    Article  ADS  Google Scholar 

  8. K. Ishimoto, H. Yamaguchi, Y. Yamaguchi, J. Suzuki, M. Arai, M. Furusaka, and Y. Endoh, J. Magn. Magn. Mater. 90–91, 163 (1990).

    Article  Google Scholar 

  9. K. Ishimoto, Y. Yamaguchi, J. Suzuki, M. Arai, M. Furusaka, and Y. Endoh, Physica B 213–214, 381 (1995).

    Article  Google Scholar 

  10. B. Lebech, P. Harris, J. Skov Pedersen, K. Mortensen, C. I. Gregory, N. R. Bernhoeft, M. Jermy, and S. A. Brown, J. Magn. Magn. Mater. 140, 119 (1995).

    Article  ADS  Google Scholar 

  11. S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, Yu. O. Chetverikov, and H. Eckerlebe, Phys. Rev. B 73, 224440 (2006).

    Article  ADS  Google Scholar 

  12. S. V. Grigoriev, S. V. Maleyev, V. A. Dyadkin, D. Menzel, J. Schoenes, and H. Eckerlebe, Phys. Rev. B 76, 092407 (2007).

    Article  ADS  Google Scholar 

  13. S. V. Grigoriev, V. A. Dyadkin, Yu. O. Chetverikov, D. Menzel, J. Schoenes, A. I. Okorokov, H. Eckerlebe, and S. V. Maleyev, Phys. Rev. B 76, 224424 (2007).

    Article  ADS  Google Scholar 

  14. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).

    Article  ADS  Google Scholar 

  15. C. Pfleiderer, T. Adams, A. Bauer, W. Biberacher, B. Binz, F. Birkelbach, P. Böni, C. Franz, R. Georgii, M. Janoschek, F. Jonietz, T. Keller, R. Ritz, S. Mühlbauer, W. Münzer, A. Neubauer, B. Pedersen, and A. Rosch, J. Phys.: Condens. Matter 22, 164207 (2010).

    ADS  Google Scholar 

  16. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, Phys. Rev. Lett. 102, 186602 (2009).

    Article  ADS  Google Scholar 

  17. W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, and C. Pfleiderer, Phys. Rev. B 81, 041203 (2010).

    Article  ADS  Google Scholar 

  18. H. Wilhelm, M. Baenitz, M. Schmidt, U. K. Rößler, A. A. Leonov, and A. N. Bogdanov, Phys. Rev. Lett. 107, 127203 (2011).

    Article  ADS  Google Scholar 

  19. E. Moskvin, S. Grigoriev, V. Dyadkin, H. Eckerlebe, M. Baenitz, M. Schmidt, and H. Wilhelm, Phys. Rev. Lett. 110, 077207 (2013).

    Article  ADS  Google Scholar 

  20. T. Adams, S. Muhlbauer, C. Pfleiderer, F. Jonietz, A. Bauer, A. Neubauer, R. Georgii, P. Böni, U. Keiderling, K. Everschor, M. Garst, and A. Rosch, Phys. Rev. Lett. 107, 217206 (2011).

    Article  ADS  Google Scholar 

  21. X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010).

    Article  ADS  Google Scholar 

  22. X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nature Mater. 10, 106 (2011).

    Article  ADS  Google Scholar 

  23. A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura, Nano Lett. 12, 1673 (2012).

    Article  ADS  Google Scholar 

  24. U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006).

    Article  ADS  Google Scholar 

  25. U. R. Rößler, A. A. Leonov, and A. N. Bogdanov, J. Phys.: Conf. Ser. 303, 012105 (2011).

    ADS  Google Scholar 

  26. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Boni, Phys. Rev. Lett. 102, 186602 (2009).

    Article  ADS  Google Scholar 

  27. The internal magnetic field was calculated using the expression \(B_{\operatorname{int} } = B_{ext} - 4\pi {\rm M}\hat {\rm N}\), where N was taken equal to 1 if H is perpendicular to the sample plate. The magnetization was considered to be proportional to an external field M = χH with χ = const depending on the temperature and extracted from the magnetization measurements. Thus, corrected magnetic field may have a systematic error of about 5%.

  28. N. Potapova, V. Dyadkin, E. Moskvin, H. Eckerlebe, D. Menzel, and S. Grigoriev, Phys. Rev. B 86, 060406(R) (2012).

    Article  ADS  Google Scholar 

  29. V. E. Dmitrienko and V. A. Chizhikov, Phys. Rev. Lett. 108, 187203 (2012).

    Article  ADS  Google Scholar 

  30. V. A. Chizhikov and V. E. Dmitrienko, Phys. Rev. B 88, 214402 (2013).

    Article  ADS  Google Scholar 

  31. O. Petrova and O. Tchernyshyov, Phys. Rev. B 84, 214433 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Grigoriev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, S.V., Potapova, N.M., Moskvin, E.V. et al. Hexagonal spin structure of A-phase in MnSi: Densely packed skyrmion quasiparticles or two-dimensionally modulated spin superlattice?. Jetp Lett. 100, 216–221 (2014). https://doi.org/10.1134/S0021364014150065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014150065

Keywords

Navigation