Skip to main content
Log in

Status of the lepton g − 2 and effects of hadronic corrections

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electron and muon anomalous magnetic moments (AMM) are measured in experiments and studied in the Standard Model (SM) with the highest precision accessible in particle physics. The comparison of the measured quantity with the SM prediction for the electron AMM provides the best determination of the fine structure constant. The muon AMM is more sensitive to the appearance of New Physics effects and, at present, there appears to be a three- to four-standard deviation between the SM and experiment. The lepton AMMs are pure relativistic quantum correction effects and therefore test the foundations of relativistic quantum field theory in general, and of quantum electrodynamics (QED) and SM in particular, with highest sensitivity. Special attention is paid to the studies of the hadronic contributions to the muon AMM which constitute the main source of theoretical uncertainties of the SM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Jegerlehner and A. Nyffeler, Phys. Rep. 477, 1 (2009).

    Article  ADS  Google Scholar 

  2. J. P. Miller, E. de Rafael, B. L. Roberts, and D. Stuckinger, Ann. Rev. Nucl. Part. Sci. 62, 237 (2012).

    Article  ADS  Google Scholar 

  3. D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008).

    Article  ADS  Google Scholar 

  4. T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111807 (2012).

    Article  ADS  Google Scholar 

  5. T. Kinoshita, Int. J. Mod. Phys. A 29, 1430003 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Laporta and E. Remiddi, Phys. Lett. B 379, 283 (1996).

    Article  ADS  Google Scholar 

  7. P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012).

    Article  ADS  Google Scholar 

  8. R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez, and F. Biraben, Phys. Rev. Lett. 106, 080801 (2011).

    Article  ADS  Google Scholar 

  9. G. W. Bennett et al. (Muon (g-2) Collab.), Phys. Rev. D 73, 072003 (2006).

    Article  ADS  Google Scholar 

  10. G. Venanzoni (Fermilab E989 Collab.), J. Phys. Conf. Ser. 349, 012008 (2012). http://gm2.fnal.gov/

    Article  ADS  Google Scholar 

  11. N. Saito (J-PARC g-2/EDM Collab.), AIP Conf. Proc. 1467, 45 (2012).

    Article  ADS  Google Scholar 

  12. T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111808 (2012).

    Article  ADS  Google Scholar 

  13. A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys. Rev. D 67, 073006 (2003); Phys. Rev. D 73, 119901(E) (2006).

    Article  ADS  Google Scholar 

  14. C. Gnendiger, D. Stockinger, and H. Stockinger-Kim, Phys. Rev. D 88, 053005 (2013).

    Article  ADS  Google Scholar 

  15. G. Aad et al. (ATLAS Collab.), Phys. Lett. B 716, 1 (2012).

    Article  ADS  Google Scholar 

  16. G. Aad et al. (ATLAS Collab.), Phys. Lett. B 726, 88 (2013).

    Article  ADS  Google Scholar 

  17. S. Chatrchyan et al. (CMS Collab.), Phys. Lett. B 716, 30 (2012).

    Article  ADS  Google Scholar 

  18. S. Chatrchyan et al. (CMS Collab.), Phys. Rev. Lett. 110, 081803 (2013).

    Article  ADS  Google Scholar 

  19. C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961); L. Durand, Phys. Rev. 128, 441 (1962); M. Gourdin and E. de Rafael, Nucl. Phys. B 10, 667 (1969).

    Article  Google Scholar 

  20. M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 71, 1515 (2011); Eur. Phys. J. C 72, 1874(E) (2012).

    Article  ADS  Google Scholar 

  21. K. Hagiwara, R. Liao, A. D. Martin, D. Nomura, and T. Teubner, J. Phys. G 38, 085003 (2011).

    Article  ADS  Google Scholar 

  22. F. Jegerlehner and R. Szafron, Eur. Phys. J. C 71, 1632 (2011).

    Article  ADS  Google Scholar 

  23. J. Prades, E. de Rafael, and A. Vainshtein, in Advanced Series on Directions in High Energy Physics, Vol. 20; arXiv:0901.0306 [hep-ph].

  24. S. Laporta and E. Remiddi, Phys. Lett. B 301, 440 (1993).

    Article  ADS  Google Scholar 

  25. J. H. Kuhn, A. I. Onishchenko, A. A. Pivovarov, and O. L. Veretin, Phys. Rev. D 68, 033018 (2003).

    Article  ADS  Google Scholar 

  26. E. de Rafael, Phys. Lett. B 322, 239 (1994).

    Article  ADS  Google Scholar 

  27. M. Hayakawa, T. Kinoshita, and A. I. Sanda, Phys. Rev. Lett. 75, 790 (1995); M. Hayakawa and T. Kinoshita, Phys. Rev. D 57, 465 (1998); Phys. Rev. D 66, 019902(E) (2002).

    Article  ADS  Google Scholar 

  28. J. Bijnens, E. Pallante, and J. Prades, Phys. Rev. Lett. 75, 1447 (1995); J. Bijnens, E. Pallante, and J. Prades, Nucl. Phys. B 474, 379 (1996); Nucl. Phys. B 626, 410 (2002).

    Article  ADS  Google Scholar 

  29. M. Knecht and A. Nyffeler, Phys. Rev. D 65, 073034 (2002).

    Article  ADS  Google Scholar 

  30. K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004).

    Article  ADS  Google Scholar 

  31. A. Nyffeler, Phys. Rev. D 79, 073012 (2009).

    Article  ADS  Google Scholar 

  32. K. Kampf and J. Novotny, Phys. Rev. D 84, 014036 (2011).

    Article  ADS  Google Scholar 

  33. P. Roig, A. Guevara, and G. L. Castro, Phys. Rev. D 89, 073016 (2014).

    Article  ADS  Google Scholar 

  34. E. Bartos, A. Z. Dubnickova, S. Dubnicka, E. A. Kuraev, and E. Zemlyanaya, Nucl. Phys. B 632, 330 (2002).

    Article  ADS  Google Scholar 

  35. A. A. Pivovarov, Phys. At. Nucl. 66, 902 (2003); hep-ph/0110248.

    Article  Google Scholar 

  36. J. Erler and G. T. Sanchez, Phys. Rev. Lett. 97, 161801 (2006).

    Article  ADS  Google Scholar 

  37. R. Boughezal and K. Melnikov, Phys. Lett. B 704, 193 (2011).

    Article  ADS  Google Scholar 

  38. D. Greynat and E. de Rafael, J. High Energy Phys. 1207, 020 (2012).

    Article  ADS  Google Scholar 

  39. A. E. Dorokhov and W. Broniowski, Phys. Rev. D 78, 073011 (2008); A. E. Dorokhov, A. E. Radzhabov, and A. S. Zhevlakov, Eur. Phys. J. C 71, 1702 (2011).

    Article  ADS  Google Scholar 

  40. A. E. Dorokhov, A. E. Radzhabov, and A. S. Zhevlakov, Eur. Phys. J. C 72, 2227 (2012).

    Article  ADS  Google Scholar 

  41. T. Goecke, C. S. Fischer, and R. Williams, Phys. Rev. D 83, 094006 (2011); Phys. Rev. D 86, 099901 (2012); Phys. Rev. D 87, 034013 (2013).

    Article  ADS  Google Scholar 

  42. D. K. Hong and D. Kim, Phys. Lett. B 680, 480 (2009).

    Article  ADS  Google Scholar 

  43. L. Cappiello, O. Cata, and G. D’Ambrosio, Phys. Rev. D 83, 093006 (2011).

    Article  ADS  Google Scholar 

  44. T. Blum, A. Denig, I. Logashenko, E. de Rafael, B. L. Roberts, T. Teubner, and G. Venanzoni, hep-ph/1311.2198.

  45. A. E. Dorokhov, A. E. Radzhabov, and A. S. Zhevlakov, in preparation.

  46. E. Pallante, Phys. Lett. B 341, 221 (1994); B. Holdom, R. Lewis, and R. R. Mendel, Z. Phys. C 63, 71 (1994); T. Goecke, C. S. Fischer, and R. Williams, Phys. Lett. B 704, 211 (2011).

    Article  ADS  Google Scholar 

  47. A. E. Dorokhov, Phys. Rev. D 70, 094011 (2004).

    Article  ADS  Google Scholar 

  48. A. L. Kataev, Phys. Rev. D 86, 013010 (2012).

    Article  ADS  Google Scholar 

  49. A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Nucl. Phys. B 879, 1 (2014).

    Article  MATH  ADS  Google Scholar 

  50. I. V. Anikin, A. E. Dorokhov, and L. Tomio, Phys. Part. Nucl. 31, 509 (2000).

    Google Scholar 

  51. A. E. Dorokhov and W. Broniowski, Eur. Phys. J. C 32, 79 (2003).

    Article  ADS  Google Scholar 

  52. A. E. Dorokhov, Eur. Phys. J. C 42, 309 (2005); A. E. Dorokhov, JETP Lett. 82, 1 (2005).

    Article  ADS  Google Scholar 

  53. A. E. Dorokhov, Acta Phys. Polon. B 36, 3751 (2005).

    ADS  Google Scholar 

  54. S. Mandelstam, Ann. Phys. 19, 1 (1962); J. Terning, Phys. Rev. D 44, 887 (1991).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. S. J. Brodsky and E. de Rafael, Phys. Rev. 168, 1620 (1968).

    Article  ADS  Google Scholar 

  56. J. Beringer et al. (Particle Data Group Collab.), Phys. Rev. D 86, 010001 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dorokhov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorokhov, A.E., Radzhabov, A.E. & Zhevlakov, A.S. Status of the lepton g − 2 and effects of hadronic corrections. Jetp Lett. 100, 133–143 (2014). https://doi.org/10.1134/S0021364014140045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014140045

Keywords

Navigation