Skip to main content
Log in

Corrosion Resistance of GdTbDyHoSc and GdTbDyHoY High-Entropy Rare-Earth Alloys with Protective Coatings

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied for the first time the feasibility of using Al2O3 and Al : Zn (1 : 1) coatings produced by supersonic plasma spraying for protecting GdTbDyHoSc and GdTbDyHoY high-entropy rare-earth (RE) alloys from corrosion in a salt-fog chamber. The results demonstrate that, under salt fog conditions, Al2O3 coatings break down through local surface activation, resulting in pitting corrosion, with a considerable fraction of the coating on the main material remaining intact. The alloys coated with Al : Zn (1 : 1) exhibit lower corrosion resistance under salt fog conditions as a consequence of electrochemical corrosion. Interaction of Al2O3 with NaCl limits the suitability of such coatings for protecting high-entropy RE alloys under salt fog conditions. Limitations refer to the specimen test time and coating thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Gelchinski, B.R., Balyakin, I.A., Yuryev, A.A., and Rempel, A.A., High-entropy alloys: properties and prospects of application as protective coatings, Russ. Chem. Rev., 2022, vol. 91, p. RCR5023. https://doi.org/10.1070/RCR5023

    Article  Google Scholar 

  2. Rogachev, A.S., Structure, stability, and properties of high-entropy alloys, Phys. Met. Metallogr., 2020, vol. 121, no. 8, pp. 733–764. https://doi.org/10.1134/S0031918X20080098

    Article  CAS  Google Scholar 

  3. Gelchinski, B.R., Balyakin, I.A., Ilinykh, N.I., and Rempel, A.A., Analysis of the probability of synthesizing high-entropy alloys in the systems Ti–Zr–Hf–V–Nb, Gd–Ti–Zr–Nb–Al, and Zr–Hf–V–Nb–Ni, Phys. Mesomech., 2021, vol. 24, no. 6, pp. 701–706. https://doi.org/10.1134/S1029959921060084

    Article  Google Scholar 

  4. Chen, T.K., Shun, T.T., Yeh, J.-W., and Wong, M.S., Nanostructured nitride films of multi-element high-entropy alloys by reactive dc sputtering, Surf. Coat. Technol., 2004, vols. 188–189, pp. 193–200. https://doi.org/10.1016/j.surfcoat.2004.08.023

    Article  CAS  Google Scholar 

  5. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  6. Takeuchi, K., Amiya, T., Wada, K., Yubuta, W., and Zhang, W., High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM, 2014, vol. 66, pp. 1984–1992. https://doi.org/10.1007/s11837-014-1085-x

    Article  CAS  Google Scholar 

  7. Chang, C.-H., Titus, M.S., and Yeh, J.-W., Oxidation behavior between 700 and 1300°C of refractory TiZrNbHfTa high-entropy alloys containing aluminum, Adv. Eng. Mater., 2018, vol. 20, p. 1700948. https://doi.org/10.1002/adem.201700948

    Article  CAS  Google Scholar 

  8. Bataeva, Z.B., Ruktuev, A.A., Ivanov, I.V., Yurgin, A.B., and Bataev, I.A., Survey of research on alloys designed in the entropy approach, Obrab. Met. (Tekhnol., Obo-rud., Instrum.), 2021, vol. 23, no. 2, pp. 116–146. https://doi.org/10.17212/1994-6309-2021-23.2-116-146

  9. Ryltsev, R.E., Estemirova, S.Kh., Yagodin, D.A., Sterkhov, E.V., and Uporov, S.A., Structure, thermal stability and transport properties of heat-resistant high-entropy ZrTiHfNb alloy, Phys. Solid State, 2022, vol. 14, no. 12, pp. 2224–2227. https://doi.org/10.21883/PSS.2022.14.54317.29s

    Article  Google Scholar 

  10. Uporov, S.A., Estemirova, S.Kh., Sterkhov, E.V., Zaitseva, P.V., Skryl’nik, M.Yu., Shunyaev, K.Yu., and Rempel, A.A., Crystallization behavior, structure, and thermal stability of GdTbDyHoSc and GdTbDyHoY high-entropy alloys, Rasplavy, 2022, no. 5, pp. 443–453. https://doi.org/10.31857/S0235010622050097

  11. Gates-Rector, S. and Blanton, T., The Powder Diffraction File: a quality materials characterization database, Powder Diffr., 2019, vol. 34, no. 4, pp. 352–360. https://doi.org/10.1017/S0885715619000812

    Article  CAS  Google Scholar 

  12. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, no. 2, pp. 65–71. https://doi.org/10.1107/S0021889869006558

  13. Ilinykh, S.A., Sarsadskih, K.I., Chusov, S.A., Korolev, O.A., Achmetshin, S.M., and Krashaninin, V.A., The study of powder coatings based on Al and Ni, obtained by supersonic plasma spraying, J. Phys. Conf. Ser., 2019, vol. 1281, p. 012027. https://doi.org/10.1088/1742-6596/1281/1/012027

    Article  CAS  Google Scholar 

  14. Ilinykh, S.A., Krivorogova, A.S., Ilinykh, N.I., Dolmatov, A.V., Gelchinskii, B.R., and Leontiev, L.I., Hardening of aluminum alloy machine and mechanism parts by ultrasonic plasma spraying, in Novye materialy i tekhnologii: poroshkovaya metallurgiya, kompozitsionnye materialy, zashchitnye pokrytiya, svarka. Materialy 14-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, posvyashchennoi 60-letiyu poroshkovoi metallurgii Belarusi (Novel Materials and Technologies: Powder Metallurgy, Composite Materials, Protective Coatings, and Welding. Proc. 14th Int. Science and Technology Conf. on the Occasion of the Sixtieth Anniversary of Powder Metallurgy in Belarus), Minsk, 2020, pp. 473–479.

  15. Ilinykh, S.A., Krashaninin, V.A., Ilinykh, N.I., and Leontiev, L.I., Modification of the surface of structural materials by concentrated energy flows in order to improve their performance properties, Key Eng. Mater., 2022, vol. 910, pp. 507–513. https://www.scientific.net/KEM.910.507.

    Article  Google Scholar 

  16. Spedding, F.H., Sanden, B., and Beaudry, B.J., The The Er–Y, Tb–Ho, Tb–Er, Dy–Ho, Dy–Er and Ho–Er phase systems, J. Less-Common Met., 1973, vol. 31, pp. 1–13.

    Article  CAS  Google Scholar 

  17. Osipov, K.A., Galkin, B.D., and Urazaliev, U.S., Electron diffraction study of the structure of alumina–tungsten films, Izv. Akad. Nauk SSSR, Neorg. Mater., 1973, vol. 9, no. 10, pp. 1738–1740.

    CAS  Google Scholar 

  18. Hampel, C.A., Rare Metals Handbook, New York: Reinhold, 1961.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Ural-M Shared Research Facilities Center.

Funding

This work was supported by the Russian Science Foundation, grant no. 21-43-00015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. I. Ilinykh or A. A. Rempel.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelchinski, B.R., Ignat’eva, E.V., Petrova, S.A. et al. Corrosion Resistance of GdTbDyHoSc and GdTbDyHoY High-Entropy Rare-Earth Alloys with Protective Coatings. Inorg Mater 59, 720–728 (2023). https://doi.org/10.1134/S0020168523070051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523070051

Keywords:

Navigation