Skip to main content
Log in

Modeling of the Bi2O3·SiO2 Melt Cooling Process and the Products of Melt Solidification under Various Conditions

  • Published:
Inorganic Materials Aims and scope

Abstract

Cooling of a melt with the composition Bi2O3·SiO2 and the metastable phase Bi2SiO5 under various conditions has been studied by computer simulation with ProCAST software. Using previously reported thermophysical characteristics (thermal conductivity, heat capacity, and density) of the melt and metastable phase and the experimentally determined thermal diffusivity of the metastable Bi2SiO5 compound in the range 299–700°C, we have evaluated the cooling rate, which has been shown to agree well with the experimentally determined one, confirming that the assumptions made in our simulations are quite adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhang, Q., Ravindra, Xia, H., Zhang, L., Zeng, K., Xu, Y., and Xin, C., Microwave hydrothermal synthesis of a Bi2SiO5/Bi12SiO20 heterojunction with oxygen vacancies and multiple charge transfer for enhanced photocatalytic activity, Appl. Surf. Sci., 2022, vol. 581, p. 152337. https://doi.org/10.1016/j.apsusc.2021.152337

    Article  CAS  Google Scholar 

  2. Dou, L., Li, J., Long, N., Lai, C., Zhong, J., Li, J., and Huang, S., Fabrication of 3D flower-like OVs-Bi2SiO5 hierarchical microstructures for visible light-driven removal of tetracycline, Surf. Interfaces, 2022, vol. 29, p. 101787. https://doi.org/10.1016/j.surfin.2022.101787

    Article  CAS  Google Scholar 

  3. Xie, Y., Zhang, H., Lv, J., Zhao, J., Jiang, D., and Zhan, Q., Synthesis and characterization of Bi2SiO5-coated Ag/AgBr photocatalyst with highly efficient decontamination of organic pollutants, Appl. Surf. Sci., 2022, vol. 578, p. 152074. https://doi.org/10.1016/j.apsusc.2021.152074

    Article  CAS  Google Scholar 

  4. Belik, Y.A., Vodyankin, A.A., Fakhrutdinova, E.D., Svetlichnyi, V.A., and Vodyankina, O.V., Photoactive bismuth silicate catalysts: role of preparation method, J. Photochem. Photobiol., A, 2022, vol. 425, p. 113670. https://doi.org/10.1016/j.jphotochem.2021.113670

    Article  CAS  Google Scholar 

  5. Shafafi, S., Habibi-Yangjeh, A., Feizpoor, S., Chand, H., Krishnan, V., and Wang, C., Impressive visible-light photocatalytic performance of TiO2 by integration with Bi2SiO5 nanoparticles: binary TiO2/Bi2SiO5 photocatalysts with n–n heterojunction, Colloids Surf., A, 2021, vol. 629, p. 127392. https://doi.org/10.1016/j.colsurfa.2021.127392

    Article  CAS  Google Scholar 

  6. Dou, L., Zhong, J., Li, J., Pandian, R., and Burda, C., In-situ construction of 3D nanoflower-like BiOI/Bi2SiO5 heterojunctions with enhanced photocatalytic performance for removal of decontaminants originated from a step-scheme mechanism, Appl. Surf. Sci., 2021, vol. 544, p. 148883. https://doi.org/10.1016/j.apsusc.2020.148883

    Article  CAS  Google Scholar 

  7. Guan, X., Zhang, X., Zhang, C., Li, R., Liu, J., Wang, Y., Wang, Y., Fan, C., and Li, Z., In situ hydrothermal synthesis of metallic Bi self-deposited Bi2SiO5 with enhanced photocatalytic CO2 reduction performance, Sol. RRL, 2022, p. 2200346. https://doi.org/10.1002/solr.202200346

  8. Sarkar, D., Paliwal, K.S., Ganguli, S., Praveen, A.E., Saha, D., and Mahalingam, V., Engineering of oxygen vacancy as defect sites in silicates for removal of diverse organic pollutants and enhanced aromatic alcohol oxidation, J. Environ. Chem. Eng., 2021, vol. 9, p. 105134. https://doi.org/10.1016/j.jece.2021.105134

    Article  CAS  Google Scholar 

  9. Zhereb, V.P., Metastabil’nye sostoyaniya v oksidnykh vismutsoderzhashchikh sistemakh (Metastable States in Bismuth-Containing Oxide Systems), Moscow: MAKS Press, 2003.

  10. Qureshi, Z.S., Tanimu, G., Aitani, A.M., Asaoka, S., and Alasiri, H., Production of butadiene and lower olefins via oxidative conversion of n-butane over Ni–Bi–O /zeolite catalysts, Mol. Catal., 2022, vol. 522, p. 112224. https://doi.org/10.1016/j.mcat.2022.112224

    Article  CAS  Google Scholar 

  11. Haldar, T. and Ravi Kanth Kumar, V.V., Coexistence of ferromagnetism and superconductivity in MWCNT/Bi2SiO5 nanocomposites, Phys. Scr., 2021, vol. 96, p. 125859. https://doi.org/10.1088/1402-4896/ac39ba

    Article  Google Scholar 

  12. Haldar, T., Kumar, U., Yadav, B.C., and Ravi Kanth Kumar, V.V., Hierarchical flower-like Bi2SiO5/MWCNT nanocomposites for highly sensitive LPG sensor at room temperature, J. Alloys Compd., 2021, vol. 856, p. 158157. https://doi.org/10.1016/j.jallcom.2020.158157

    Article  CAS  Google Scholar 

  13. Sakamoto, K., Hagiwara, M., Taniguchi, H., and Fujihara, S., Fabrication of bismuth silicate Bi2SiO5 ceramics as a potential high-temperature dielectric material, J. Mater. Sci., 2021, vol. 56, pp. 8415–8426.

    Article  CAS  Google Scholar 

  14. Haldar, T., Kumar, U., Yadav, B.C., and Ravi Kanth Kumar, V.V., Effect of direct-current biasing on the adjustable radio-frequency negative permittivity characteristics of Bi2SiO5/multiwall carbon nanotube metacomposites, Ceram. Int., 2021, vol. 47, pp. 1389–1398.

    Article  CAS  Google Scholar 

  15. Chen, D., Liang, Y., Miao, S., Bi, J., and Sun, K., Nd3+ doped Bi2SiO5 nanospheres for stable ratiometric optical thermometry in the first biological window, J. Lumin., 2021, vol. 234, p. 117967. https://doi.org/10.1016/j.jlumin.2021.117967

    Article  CAS  Google Scholar 

  16. Kargin, Yu.F., Zhereb, V.P., and Skorikov, V.M., Stable and metastable phase equilibria in the Bi2O3–SiO2 system. Zh. Neorg. Khim., 1991, vol. 36, no. 10, pp. 2611–2616.

    CAS  Google Scholar 

  17. Zhereb, V.P., Physicochemical investigation of metastable phase equilibria in the Bi2O3–MO2 (M = Si, Ge, Ti) systems, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: Kurnakov Inst. of General and Inorganic Chemistry, USSR Acad. Sci., 1980.

  18. Bermeshev, T.V., Zhereb, V.P., Tas-Ool, R.N., Mazurova, E.V., and Metelitsa, S.I., Phase separation in the Bi2O3—SiO2 system. Effect of cooling conditions on the phase composition and microstructure of solidification products, Russ. Chem. Bull., 2021, vol. 70, no. 8, pp. 1462–1470.

    Article  CAS  Google Scholar 

  19. Zhereb, V.P., Physicochemical investigation of metastable phase equilibria in the Bi2O3–MO2 (M = Si, Ge, Ti) systems, Cand. Sci. (Chem.) Dissertation, Moscow: Kurnakov Inst. of General and Inorganic Chemistry, USSR Acad. Sci., 1980.

  20. Denisova, L.T., Irtyugo, L.A., and Denisov, V.M., Heat capacity of oxides in the Bi2O3–SiO2 system, Phys. Solid State, 2014, vol. 56, no. 10, pp. 2146–2148. https://doi.org/10.1134/S1063783414100096

    Article  CAS  Google Scholar 

  21. Golyshev, V.D., Gonik, M.A., and Tsvetovsky, V.B., Spectral absorptivity and thermal conductivity of BGO and BSO melts and single crystals, Int. J. Thermophys., 2008, vol. 29, pp. 1480–1490. https://doi.org/10.1007/s10765-008-0499-5

    Article  CAS  Google Scholar 

  22. Zinov’ev, V.E., Spravochnik teplofizicheskie svoistva metallov pri vysokikh temperaturakh (High-Temperature Thermophysical Properties of Metals: A Handbook), Moscow: Metallurgiya, 1989, p. 381.

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Krasnoyarsk Krai Shared Research Facilities Center, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences.

We acknowledge the use of equipment at the Knowledge Intensive Methods for Characterization and Analysis of Novel Materials, Nanomaterials, and Mineral Raw Materials Shared Research Facilities Center, Siberian Federal University federal state autonomous educational institution of higher education.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target, research theme no. FSRZ-2020-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bermeshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermeshev, T.V., Zhereb, V.P., Bundin, M.P. et al. Modeling of the Bi2O3·SiO2 Melt Cooling Process and the Products of Melt Solidification under Various Conditions. Inorg Mater 58, 1058–1064 (2022). https://doi.org/10.1134/S0020168522100028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522100028

Keywords:

Navigation