Skip to main content
Log in

Magnesium Vapor Reduction of Tantalum Oxide Compounds in the Temperature Range 540–680°C

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied characteristics and specific features of pore structure formation in powders prepared by reducing Ta2O5 and Mg4Ta2O9 with magnesium vapor in the temperature range 540–680°C. The results demonstrate that lowering the reduction temperature allows coarsening of the primary structure of the reduced particles to be prevented to a significant degree, thereby increasing the volume of pores less than 5 nm in diameter. This has made it possible to obtain tantalum powder with a specific surface area of 59 m2/g by reducing Ta2O5 at a temperature of 540°C. In the case of reduction of Mg4Ta2O9 under such conditions, the specific surface area of the powder decreases with decreasing reduction temperature because of the complete filling of most pores with native Ta2O5 oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zednicek, T., Tantalum capacitors: current trends and potentials future, T.I.C. Bull., 2019, no. 176, pp. 15–21.

  2. Freeman, Y., Tantalum and Niobium-Based Capacitors. Science, Technology, and Applications, New York: Springer, 2018. https://doi.org/10.1007/978-3-319-67870-2_2

  3. Stratton, P., Anderson, J., and Baylis, R., The changing face of tantalum, T.I.C. Bull., 2018, no. 172, pp. 16–21.

  4. Millman, W. and Huntington, D., Tantalum capacitors bring micro-miniaturisation to electronic devices, Proc. CARTS Asia, Taipei, 2006, pp. 9–18.

  5. Bergman, R.M. and Mosheim, Ch.E., US Patent 4684399, 1987.

  6. Purushotham, Y., Balaji, T., Kumar, A., et al., Chemical and physical properties of tantalum powder, Mod. Phys Lett. B, 2001, vol. 15, no. 20, pp. 867–871. https://doi.org/10.1142/S0217984901002622

    Article  CAS  Google Scholar 

  7. Cho, S.W., Shim, G., Park, J.S., et al., Making of tantalum powder using the hunter process, Met. Mater. Int., 2006, vol. 12, no. 1, pp. 51–56. https://doi.org/10.1007/BF03027523

    Article  CAS  Google Scholar 

  8. Orlov, V.M., Kolosov, V.N., Prokhorova, T.Yu., et al., Preparation of capacitor powders with a large specific surface area, Khim. Tekhnol., 2007, vol. 8, no. 2, pp. 62–65.

  9. Orlov, V.M., Kolosov, V.N., Prokhorova, T.Yu., and Miroshnichenko, M.N., Research into the technology of high-capacitance tantalum capacitor powders, Tsvetn. Met., 2011, no. 11, pp. 30–35.

  10. Kolosov, V.N., Orlov, V.M., Miroshnichenko, M.N., and Prokhorova, T.Yu., Preparation of high-purity tantalum powders by sodium-thermal reduction, Inorg. Mater., 2012, vol. 48, no. 9, pp. 903–907. https://doi.org/10.1134/S0020168512080080

    Article  CAS  Google Scholar 

  11. Nebera, A.L., Lizunov, A.V., and Semenov, A.A., Nanocrystalline tantalum powders: preparation, properties, and potential applications, Kompoz. Nanostrukt., 2015, vol. 7, no. 3, pp. 121–126.

    CAS  Google Scholar 

  12. Barr, J.L., Axelbaum, R.L., and Macias, M.E., Processing salt-encapsulated tantalum nanoparticles for high purity, ultra high surface area applications, J. Nanopart. Res., 2006, vol. 8, no. 1, pp. 11–22. https://doi.org/10.1007/s11051-005-8336-2

    Article  CAS  Google Scholar 

  13. Park, K.Y., Kim, H.J., and Suh, Y.J., Preparation of tantalum nanopowders through hydrogen reduction of TaCl5 vapor, Powder Technol., 2007, vol. 172, no. 3, pp. 144–148. https://doi.org/10.1016/j.powtec.2006.11.011

    Article  CAS  Google Scholar 

  14. Blagoveshenskiy, Y.V., Isaeva, N.V., Melnik, Y.I., and Blagoveshenskaia, N.V., Tantalum and niobium nanopowders for nanoporous material creation, Rare Met., 2009, vol. 28, special issue, October, pp. 646–649.

    Google Scholar 

  15. Kryzhanov, M.V., Orlov, V.M., and Sukhorukov, V.V., Thermodynamic modeling of magnesiothermic reduction of niobium and tantalum from pentoxides, Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 379–383. https://doi.org/10.1134/S107042721003002X

    Article  CAS  Google Scholar 

  16. Nersisyan, H.H., Lee, J.H., Lee, S.I., and Won, C.W., The role of the reaction medium in the self-propagating high temperature synthesis of nanosized tantalum powder, Combust. Flame, 2003, vol. 135, no. 4, pp. 539–545. https://doi.org/10.1134/S107042721003002X

    Article  CAS  Google Scholar 

  17. Orlov, V.M. and Kryzhanov, M.V., Magnesium-thermic reduction of tantalum oxide by self-propagating high-temperature synthesis, Russ. Metall. (Engl. Transl.), 2010, no. 5, pp. 384–388. https://doi.org/10.1134/S0036029510050046

  18. Nersisyan, H.H., Ryu, H.S., Lee, J.H., Suh, H., and Won, H.I., Tantalum network nanoparticles from a Ta2O5 + kMg system by liquid magnesium controlled combustion, Combust. Flame, 2020, vol. 219, September, pp. 136–146. https://doi.org/10.1016/j.combustflame.2020.05.019

    Article  CAS  Google Scholar 

  19. Ryu, H.S., Nersisyan, H.H., Park, K.T., and Lee, J.H., Porous tantalum network structures exhibiting high electrochemical performance as capacitors, J. Energy Storage, 2021, vol. 34, February, paper 102222. https://doi.org/10.1016/j.est.2020.102222

  20. Shekhter, L.N., Tripp, T.B., and Lanin, L.L., US Patent 6171363, 2001.

  21. Haas, H., Magnesium vapour reduced tantalum powders with very high capacitances, CARTS Europe 2004: 18th Ann. Passive Components Conf., 2004, pp. 5–8.

  22. Haas, H. and Schnitter, Ch., Production of capacitor grade tantalum and niobium powders using the new magnesium vapour reduction process, Proc. EMC, 2005, pp. 1–8.

  23. Haas, H., Schnitter, Ch., and Sato, N., Challenge: highest capacitance tantalum powders, CARTS Europe 2008, Helsinki, 2008, pp. 157–167.

  24. Orlov, V.M. and Kryzhanov, M.V., Production of tantalum powders by the magnesium reduction of tantalates, Russ. Metall. (Engl. Transl.), 2015, no. 7, pp. 590–593. https://doi.org/10.1134/S0036029515070101

  25. Hwang, S.M., Wang, J.P., and Lee, D.W., Extraction of tantalum powder via the magnesium reduction of tantalum pentoxide, Metals, 2019, vol. 9, no. 2, paper 205. https://doi.org/10.3390/MET9020205

  26. Hwang, S.M., Park, S.J., Wang, J.P., et al., Preparation of tantalum metal powder by magnesium gas reduction of tantalum pentoxide with different initial particle size, Int. J. Refract. Met. Hard Mater., 2021, vol. 100, November, paper 105620. https://doi.org/10.1016/j.ijrmhm.2021.105620

  27. Okabe, T.H., Sato, N., Mitsuda, Y., and Ono, S., Production of tantalum powder by magnesiothermic reduction of feed preform, Mater. Trans., 2003, vol. 44, no. 12, pp. 2646–2653. https://doi.org/10.2320/matertrans.44.2646

    Article  CAS  Google Scholar 

  28. Yuan, B. and Okabe, T.H., Production of fine tantalum powder by preform reduction process using Mg–Ag alloy reductant, J. Alloys Compd., 2007, vol. 443, nos. 1–2, pp. 71–80. https://doi.org/10.1016/j.jallcom.2006.10.004

    Article  CAS  Google Scholar 

  29. Müller, R., Bobeth, M., Brumm, H., et al., Kinetics of nanoscale structure development during Mg-vapour reduction of tantalum oxide, Int. J. Mater. Res., 2007, vol. 98, no. 11, pp. 1138–1145. https://doi.org/10.3139/146.101567

    Article  Google Scholar 

  30. Orlov, V.M., Kryzhanov, M.V., and Knyazeva, A.I., Tantalum powders with a mesoporous structure, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 5, pp. 814–818. https://doi.org/10.1134/S207020511605018X

    Article  CAS  Google Scholar 

  31. Rozenberg, L.A. and Shtel’man, S.V., State of oxygen in tantalum powders, Izv. Akad Nauk SSSR, Met., 1985, no. 4, pp. 163–164.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Orlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.M., Kiselev, E.N. Magnesium Vapor Reduction of Tantalum Oxide Compounds in the Temperature Range 540–680°C. Inorg Mater 58, 799–805 (2022). https://doi.org/10.1134/S002016852208009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852208009X

Keywords:

Navigation