Skip to main content
Log in

Fabrication of Hydroxyapatite Ceramics by Rapid Microwave Layer-by-Layer Sintering

  • Published:
Inorganic Materials Aims and scope

Abstract

Using hydroxyapatite as an example, first results of research on a new additive method of manufacturing ceramic products are presented. The method consists of repeated sequential application of suspension layers with high content of powder material and their rapid 24 GHz microwave sintering. The stability of aqueous suspensions of hydroxyapatite powder with submicron particle size depending on the pH of the dispersion medium and dispersants was studied. Suspensions with a high value of the solid load mass and a fluidity sufficient to ensure the continuity of layers applied by the doctor blade method were obtained. By the method of layer-by-layer microwave sintering with a heating rate of up to 30°C/min and a maximum temperature of up to 1330°C, ceramic samples with a closed system of micron-sized pores and a density of up to 92% of the theoretical value were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Zocca, A., Colombo, P., Gomes, C.M., and Günster, J., Additive manufacturing of ceramics: issues, potentialities, and opportunities, J. Am. Ceram. Soc., 2015, vol. 98, pp. 1983–2001.

    Article  CAS  Google Scholar 

  2. Gao, W., Zhang, Y., Ramanujan, D., et al., The status, challenges, and future of additive manufacturing in engineering, Comput. Des., 2015, vol. 69, pp. 65–89.

    Google Scholar 

  3. Travitzky, N., Bonet, A., Dermeik, B., et al., Additive manufacturing of ceramic-based materials, Adv. Eng. Mater., 2014, vol. 16, pp. 729–754.

    Article  CAS  Google Scholar 

  4. Nguyen, A.K., Goering, P.L., Skoog, S.A., and Narayan, R.J., Physical characterization and in vitro evaluation of 3D printed hydroxyapatite, tricalcium phosphate, zirconia, alumina, and SiAlON structures made by lithographic ceramic manufacturing, MRS Adv., 2020, vol. 5, pp. 2419–2428.

    Article  CAS  Google Scholar 

  5. Bykov, Y.V., Rybakov, K.I., and Semenov, V.E., High-temperature microwave processing of materials, J. Phys. D: Appl. Phys., 2001, vol. 34, pp. R55–R75.

    Article  CAS  Google Scholar 

  6. Curto, H., Thuault, A., Jean, F., et al., Coupling additive manufacturing and microwave sintering: a fast processing route of alumina ceramics, J. Eur. Ceram. Soc., 2020, vol. 40, pp. 2548–2554.

    Article  CAS  Google Scholar 

  7. Bykov, Yu.V., Eremeev, A.G., Glyavin, M.Yu., et al., Millimeter-range gyrotron research system: I. Description of the system, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2018, vol. 61, pp. 843–855.

    Google Scholar 

  8. Glyavin, M.Yu., Morozkin, M.V., Tsvetkov, A.I., et al., Automated microwave system based on a cw gyrotron with an operating frequency of 263 GHz and output power of 1 kW, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2015, vol. 58, pp. 709–719.

    Google Scholar 

  9. Bykov, Y., Egorov, S., Eremeev, A., et al., On the mechanism of microwave flash sintering of ceramics, Materials (Basel), 2016, vol. 9, pp. 684–690.

    Article  Google Scholar 

  10. Bykov, Yu.V., Egorov, S.V., Eremeev, A.G., et al., Flash sintering of oxide ceramics under microwave heating, Tech. Phys., 2018, vol. 88, pp. 391–397.

    Article  Google Scholar 

  11. Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., et al., Rapid microwave sintering of zinc oxide-based varistor ceramics, J. Eur. Ceram. Soc., 2021, vol. 41, pp. 6508–6515.

    Article  CAS  Google Scholar 

  12. Bykov, Y.V., Egorov, S.V., Eremeev, A.G., et al., Ultra-rapid microwave sintering of pure and Y2O3-doped MgAl2O4, J. Am. Ceram. Soc., 2018, vol. 102, no. 2, pp. 559–568.

    Google Scholar 

  13. Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., et al., On the correlation between the thermal instability onset and the flash sintering event, Scr. Mater., 2020, vol. 174, pp. 68–71.

    Article  CAS  Google Scholar 

  14. Bykov, Y.V., Egorov, S.V., Eremeev, A.G., et al., Flash microwave sintering of transparent Yb:(LaY)2O3 ceramics, J. Am. Ceram. Soc., 2015, vol. 98, pp. 3518–3524.

    Article  CAS  Google Scholar 

  15. Puzyrev, I.S., Lipilin, A.S., Ivanov, V.V., and Yatluk, Y.G., Stabilization of isopropanol dispersions of nanosized powders of yttrium oxide-stabilized zirconium dioxide, Colloid J., 2011, vol. 73, pp. 97–103.

    Article  CAS  Google Scholar 

  16. Cesarano, J., Aksay, I.A., and Bleier, A., Stability of aqueous alpha-Al2O3 suspensions with poly(methacrylic acid) polyelectrolyte, J. Am. Ceram. Soc., 1988, vol. 71, pp. 250–255.

    Article  CAS  Google Scholar 

  17. Hackley, V.A., Colloidal processing of silicon nitride with poly(acrylic acid): I. Adsorption and electrostatic interactions, J. Am. Ceram. Soc., 2005, vol. 80, pp. 2315–2325.

    Article  Google Scholar 

  18. Pina, A., Nakache, E., Feret, B., and Depraetere, P., Copolymer polyelectrolyte adsorption onto titanium dioxide, Colloids Surf., A, 1999, vol. 158, pp. 375–384.

    Article  CAS  Google Scholar 

  19. Kamiya, H., Fukuda, Y., Suzuki, Y., et al., Effect of polymer dispersant structure on electrosteric interaction and dense alumina suspension behavior, J. Am. Ceram. Soc., 2004, vol. 82, pp. 3407–3412.

    Article  Google Scholar 

  20. Ahmed, Y., Ewais, E., and El-Sheikh, S., Effect of dispersion parameters on the consolidation of starch-loaded hydroxyapatite slurry, Process. Appl. Ceram., 2014, vol. 8, pp. 127–135.

    Article  Google Scholar 

  21. Tripathi, G. and Basu, B., A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations, Ceram. Int., 2012, vol. 38, pp. 341–349.

    Article  CAS  Google Scholar 

  22. Knowles, J., Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders, Biomaterials, 2000, vol. 21, pp. 1387–1392.

    Article  CAS  Google Scholar 

  23. Gardini, D., Galassi, C., and Lapasin, R., Rheology of hydroxyapatite dispersions, J. Am. Ceram. Soc., 2005, vol. 88, pp. 271–276.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project 18-29-11045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ye. Rostokina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanov, S.S., Egorov, S.V., Eremeev, A.G. et al. Fabrication of Hydroxyapatite Ceramics by Rapid Microwave Layer-by-Layer Sintering. Inorg Mater 58, 764–771 (2022). https://doi.org/10.1134/S0020168522060012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522060012

Keywords:

Navigation