Skip to main content
Log in

Surface Internal Friction in High-Q Fused Quartz Resonators

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper examines mechanisms responsible for internal friction in the surface layer of fused quartz, which degrades the performance of high-Q mechanical resonators. We propose a combined process for surface treatment of such resonators, which includes asymptotic mechanical treatment, chemical removal of a surface glass zone, and secondary annealing for stress relieve in the material. Data are presented that demonstrate adequacy of this approach. The proposed process allows one to fabricate fused quartz mechanical resonators with a quality factor of 107 and above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Braginsky, V.G., Bilenko, I.A., Vyatchanin, M.L., Gorodetsky, M.L., Mitrofanov, V.P., Prokhorov, L.G., Strygin, S.E., and Khalili, F.Ya., The road to the discovery of gravitational waves, Phys.-Usp., 2016, vol. 186, no. 9, pp. 879–885.https://doi.org/10.3367/UFNr.2016.03.037811

    Article  Google Scholar 

  2. Klimov, D.M., Zhuravlev, V.F., and Zhbanov, Yu.K., Kvartsevyi polusfericheskii rezonator (volnovoi tverdotel’nyi giroskop) (Hemispherical Quartz Resonator (Solid-State Wave Gyroscope)), Moscow: Kim L.A., 2017.

  3. Gotz, J., Brouseni a Lesteni Skla, Praha: Statni Nakladatelstvi Technicke Literatury, 1963.

    Google Scholar 

  4. Obeid, A., Dynamics of surface roughness formation during polishing with free abrasives, Cand. Sci. (Eng.) Dissertation, St. Petersburg: St. Petersburg National Research Univ. of Information Technologies, Mechanics, and Optics, 2005.

  5. Piskarev, P.V., Improving the quality of diamond abrasive polishing of glass by using effective synthetic lubricant–coolant technological fluids, Cand. Sci. (Eng.) Dissertation, Ivanovo: Ivanovo State Univ., 2004.

  6. Lipatova, A.B., Improving the throughput performance and quality of polishing of crystallographically oriented plates with diamond wheels, Cand. Sci. (Eng.) Dissertation, Moscow State Technological Univ. Stankin, 2008.

  7. Miller, P.E., Suratwala, T.I., Wong, L.L., Feit, M.D., Menapace, J.A., Davis, P.J., and Steele, R.A., The distribution of subsurface damage in fused silica, Proc. SPIE, Laser-Induced Damage in Optical Materials, 2005, vol. 5991, paper 599101.https://doi.org/10.1117/12.638821

  8. Lambropoulos, J.C., From abrasive size to subsurface damage in grinding, in OSA Technical Digest, 2000, pp. 17–18.https://doi.org/10.1364/OFT.2000.OMA6

  9. Panasyuk, G.P., Kozerozhets, I.V., Voroshilov, I.L., Ivakin, Yu.D., Privalov, V.I., and Danchevskaya, M.N., Water forms on the surface and in the bulk of silicon dioxide, Russ. J. Inorg. Chem., 2021, vol. 66, no. 5, pp. 724–730.https://doi.org/10.1134/S0036023621050120

    Article  CAS  Google Scholar 

  10. Smagin, A.G., Sound absorption phenomenon in the surface layer of crystals, Vopr. Radioelektron. Detali Komponenty Apparatury, 1964, no. 11, pp. 65–69.

  11. Darinskii, B.M., Izmailov, N.V., Loginov, V.A., Mitrokhin, V.I., and Yaroslavtsev, N.P., Surface damage-related inelastic relaxation in solids, Fiz. Tverd. Tela (S.-Peterburg), 1987, vol. 29, no. 12, pp. 3529–3533.

  12. Lunin, B.S. and Torbin, S.N., Effect of stress on internal friction in silica glass, Vestn. Mosk. Gos. Univ., Ser. 2: Khim., 2003, vol. 44, no. 2, pp. 108–114.

    CAS  Google Scholar 

  13. Spierings, G.A., Review: wet etching of silicate glasses in hydrofluoric acid based solutions, J. Mater. Sci., 1993, vol. 28, pp. 6261–6273.https://doi.org/10.1007/BF01352182

    Article  CAS  Google Scholar 

  14. Cook, L.M., Chemical processes in glass polishing, J. Non-Cryst. Solids, 1990, vol. 120, nos. 1–3, pp. 152–171.https://doi.org/10.1016/0022-3093(90)90200-6

    Article  CAS  Google Scholar 

  15. Lunin, B.S. and Tokmakov, K.V., Reduction in internal friction in silica glass with high OH content, J. Am. Ceram. Soc., 2019, vol. 102, no. 6, pp. 3329–3340.https://doi.org/10.1111/jace.16187

    Article  CAS  Google Scholar 

  16. Zener, C., Internal friction in solids: I. Theory of internal friction in reeds, Phys. Rev., 1937, vol. 52, no. 3, pp. 230–235.

    Article  Google Scholar 

  17. Startin, W.J., Beilby, M.A., and Saulson, P.R., Mechanical quality factors of fused silica resonators, Rev. Sci. Instrum., 1998, vol. 69, no. 10, pp. 3681–3689.https://doi.org/10.1063/1.1149159

    Article  CAS  Google Scholar 

  18. Strakna, R.E., Clark, A.E., Bradley, D.L., and Slie, W.M., Effect of fast-neutron irradiation on the pressure and temperature dependence of the elastic moduli of SiO2 glass, J. Appl. Phys., 1963, vol. 34, no. 5, pp. 1439–1443.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Lunin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunin, B.S., Lopatin, V.M. Surface Internal Friction in High-Q Fused Quartz Resonators. Inorg Mater 58, 636–642 (2022). https://doi.org/10.1134/S0020168522050077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522050077

Keywords:

Navigation