Skip to main content
Log in

Distinctive Features of the Rheosynthesis of Ceramic and Cermet Materials under Self-Propagating High-Temperature Synthesis Extrusion Conditions

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents current ideas and original research results in a new area of self-propagating high-temperature synthesis (SHS): rheosynthesis of articles from ceramic and cermet materials under conditions combining combustion processes and high-temperature shear deformation. A scientific basis of the production of articles with the use of these processes is information about stimulated or spontaneous post-processes in synthesis products as a result of targeted mechanical and thermal influences on a viscoplastic medium. Characteristic features of the rheological behavior of various synthesis products are discussed in relation to specific high-temperature shear deformation conditions. Subjects of investigation are presented and the key condition determining the moldability and extrudability of synthesis products is formulated. We identified various mechanisms influence of shear deformation and pressure on structure formation in SHS processes. There were demonstrated that, owing to the observed features of the structure formation and phase composition of synthesis products obtained under the effect of pressure and shear deformation (deformation texture formation, alignment of pore systems in the external force direction, etc.) and rheological structural effects (thixotropy, viscosity superanomaly, and superplasticity), there are optimal temperature and time ranges where a controlled transition of synthesis products to macroscopic flow can be ensured. As a consequence, it is possible to directly produce multifunctional articles from powders of refractory inorganic compounds in a single processing step using a single apparatus in tens of seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Merzhanov, A.G., Luchshe byt' nuzhnym, chem svobodnym… (It Is Better To Be Necessary Than Free…), Chernogolovka: Territoriya, 2005.

  2. Merzhanov, A.G., Shkiro, V.M., and Borovinskaya, I.P., USSR Inventor’s Certificate no. 255221, 1967.

  3. Maksimov, E.I., Merzhanov, A.G., and Shkiro, V.M., On self-ignition of thermite compositions, Zh. Fiz. Khim., 1966, vol. 40, no. 2, pp. 468–472.

    CAS  Google Scholar 

  4. Merzhanov, A.G. and Khaikin, B.I., On combustion of a substance with a solid reaction layer, Dokl. Akad. Nauk SSSR, 1967, vol. 173, no. 6, pp. 1382–1385.

    Google Scholar 

  5. Merzhanov, A.G. and Borovinskaya, I.P., Self-propagating high-temperature synthesis as a promising area of science and technology progress, Kontseptsiya razvitiya SVS kak oblasti nauchno-tekhnicheskogo progressa (Concept of the Development of SHS as a Field of Science and Technology Progress), Merzhanov, A.G., Ed., Chernogolovka: Territoriya, 2003.

    Google Scholar 

  6. Merzhanov, A.G., Protsessy goreniya i sintez materialov (Combustion Processes and Materials Synthesis), Chernogolovka: ISMAN, 1998.

  7. Stolin, A.M. and Bazhin, P.M., Manufacture of multipurpose composite and ceramic materials in the combustion regime and high-temperature deformation (SHS extrusion), Theor. Found. Chem. Eng., 2014, vol. 48, no. 6, pp. 751–763.https://doi.org/10.1134/S0040579514060104

    Article  CAS  Google Scholar 

  8. Bolotskaia, A.V., Mikheev, M.V., Bazhin, P.M., and Stolin, A.M., The effect of aluminum nitride nanoparticles on the structure, phase composition and properties of materials of the Ti–B–Fe system obtained by SHS-extrusion, Lett. Mater., 2020, vol. 10, no. 1, pp. 43–47.https://doi.org/10.22226/2410-3535-2020-1-43-47

    Article  Google Scholar 

  9. Bazhin, P., Chizhikov, A., Stolin, A., Antipov, M., and Konstantinov, A., Long-sized rods of Al2O3–SiC–TiB2 ceramic composite material obtained by SHS-extrusion: microstructure, X-ray analysis and properties, Ceram. Int., 2021, no. 6, paper 262.https://doi.org/10.1016/j.ceramint.2021.06.262

  10. Stolin, A.M., Bazhin, P.M., Alymov, M.I., and Mikheev, M.V., Self-propagating high-temperature synthesis of titanium carbide powder under pressure–shear conditions, Inorg. Mater., 2018, vol. 54, no. 6, pp. 521–527.https://doi.org/10.1134/S0020168518060146

    Article  CAS  Google Scholar 

  11. Turganov, Z.T., Stolin, A.M., Bazhin, P.M., and Averichev, O.A., Structural features of the refractory powder materials based on titanium carbide obtained by SHS-grinding, Adv. Mater. Technol., 2020, no. 2 (18), pp. 3–9.https://doi.org/10.17277/amt.2020.02.pp.003-009

  12. Bazhin, P.M., Konstantinov, A.S., Chizhikov, A.P., Prokopets, A.D., and Bolotskaia, A.V., Structure, physical and mechanical properties of TiB–40 wt. % Ti composite materials obtained by unrestricted SHS compression, Mater. Today Commun., 2020, vol. 25, paper 101484.https://doi.org/10.1016/j.mtcomm.2020.101484

  13. Bazhin, P.M., Stolin, A.M., Konstantinov, A.S., Chizhikov, A.P., Prokopets, A.D., and Alymov, M.I., Structural features of titanium boride-based layered composite materials produced by free SHS compression, Dokl. Chem., 2019, vol. 488, part 1, pp. 246–248.https://doi.org/10.1134/S0012500819090039

    Article  CAS  Google Scholar 

  14. Merzhanov, A.G., Stolin, A.M., and Podlesov, V.V., SHS extrusion of long sized articles from metalloceramic materials, J. Eur. Ceram. Soc., 1997, vol. 17, pp. 447–451.

    Article  CAS  Google Scholar 

  15. Buchatskii, L.M. and Stolin, A.M., High-temperature rheology of SHS materials, Inzh.-Fiz. Zh., 1992, vol. 63, no. 5, pp. 593–611.

    Google Scholar 

  16. Merzhanov, A.G., Shekk, G.Yu., Stolin, A.M., et al., On the deformation texture of refractory materials prepared by the SHS extrusion process, Dokl. Akad. Nauk SSSR, 1990, vol. 310, no. 6, pp. 1366–1370.

    CAS  Google Scholar 

  17. Shishkina, T.N., Stolin, A.M., and Podlesov, V.V., The influence of SHS production methods used on the material structure formation, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no. 1, pp. 35–41.

    CAS  Google Scholar 

  18. Galakhov, A.V., Zelenskii, V.A., Shelekhov, E.V., Kovalenko, L.V., and Alymov, M.I., Powders for fabricating polycrystalline transparent ceramics: synthetic procedures (an overview), Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 2, pp. 129–133.

    Article  CAS  Google Scholar 

  19. Kozerozhets, I.V., Panasyuk, G.P., Semenov, E.A., Vasil’ev, M.G., Ivakin, Y.D., and Danchevskaya, M.N., How acid medium affects the hydrothermal synthesis of boehmite, Russ. J. Inorg. Chem., 2020, vol. 65, no. 10, pp. 1529–1534.https://doi.org/10.1134/S0036023620100149

    Article  CAS  Google Scholar 

  20. Galiev, F.F., Saikov, I.V., Alymov, M.I., Konovalikhin, S.V., Sachkova, N.V., and Berbentsev, V.D., Composite rods by high-temperature gas extrusion of steel cartridges stuffed with reactive Ni–Al powder compacts: influence of process parameters, Intermetallics, 2021, vol. 138, paper 107317.https://doi.org/10.1016/j.intermet.2021.107317

  21. Simonenko, E.P., Simonenko, N.P., Lysenkov, A.S., et al., Reactive hot pressing of HfB2–SiC–Ta4HfC5 ultra-high temperature ceramics, Russ. J. Inorg. Chem., 2020, vol. 65, pp. 446–457.https://doi.org/10.1134/S0036023620030146

    Article  CAS  Google Scholar 

  22. Kozerozhets, I.V., Panasyuk, G.P., Semenov, E.A., et al., Water state in the products of hydrothermal treatment of hydrargillite and γ-Al2O3, Russ. J. Inorg. Chem., 2020, vol. 65, pp. 1384–1389.https://doi.org/10.1134/S0036023620090090

    Article  CAS  Google Scholar 

  23. Shapkin, N.P., Papynov, E.K., Shichalin, O.O., et al., Spark plasma sintering-reactive synthesis of SiC and SiC–HfB2 ceramics based on natural renewable raw materials, Russ. J. Inorg. Chem., 2021, vol. 66, pp. 629–637.https://doi.org/10.1134/S0036023621050168

    Article  CAS  Google Scholar 

  24. Andrievskii, R.A., Refractory compounds: novel approaches and findings, Usp. Fiz. Nauk, 2017, vol. 187, no. 3, pp. 296–310.

    Article  Google Scholar 

  25. Kablov, E.N., Svetlov, I.L., Neiman, A.V., Min, P.G., Karachevtsev, F.N., and Karpov, M.I., High-temperature composites based on the Nb–Si system reinforced with niobium silicides, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 4, pp. 609–617.

    Article  Google Scholar 

  26. Kostikov, V.I. and Varenkov, A.N., Sverkhvysokotemperaturnye kompozitsionnye materialy (Ultra-High-Temperature Composite Materials), Moscow: Intermet Inzhiniring, 2003.

  27. Ershova, I.O., Effect of refractory metal nitrides on the properties of sintered tungsten and molybdenum, Materialoved. Termich. Obrab. Met., 2003, no. 2, pp. 26–30.

  28. Merzhanov, A.G. and Rogachev, A.S., Structural macrokinetics of SHS processes, Pure Appl. Chem., 1992, vol. 64, no. 7, pp. 941–953.

    Article  CAS  Google Scholar 

  29. Kharatyan, S.L. and Merzhanov, A.G., Coupled SHS reactions as a useful tool for synthesis of materials: an overview, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. (1), pp. 59–73.https://doi.org/10.3103/S1061386212010074

  30. Merzhanov, A.G., Thermally coupled processes of self-propagating high-temperature synthesis, Dokl. Phys. Chem., 2010, vol. 434, pp. 159–162.https://doi.org/10.1134/S0012501610100015

    Article  CAS  Google Scholar 

  31. Vadchenko, S.G., Merzhanov, A.G., Mukas’yan, A.S., and Sytschev, A.E., Uniaxial loading influence on macrokinetics of gasless systems combustion, Dokl. Russ. Akad. Nauk, 1994, vol. 337, no. 5, pp. 618–621.

    CAS  Google Scholar 

  32. Malkin, A.Ya. and Kulichikhin, V.G., Current views on the structure and rheological properties of highly concentrated emulsions, Usp. Khim., 2015, vol. 84, no. 8, pp. 803–825.

    Article  CAS  Google Scholar 

  33. Malkin A.Ya., Mityukov A.V., Kotomin S.V., and Kulichikhin V.G., Plasticity of highly concentrated suspensions, Colloid J., 2019, vol. 81, no. 5, pp. 532–540.

    Article  CAS  Google Scholar 

  34. Semenov, A.B., Muranov, A.N., and Semenov, B.I., Thixo- and PIM technologies in present-day engine building, Gruzovik, 2017, vol. 10, pp. 3–6.

    Google Scholar 

  35. Kloeden, B., Weissgaerber, T., Kieback, B., and Langer, I., The processing and properties of metal injection moulded superalloys, Powder Injection Moulding Int., 2013, vol. 7, no. 1, pp. 53–66.

    Google Scholar 

  36. Chizhikov, A.P., Stolin, A.M., Bazhin, P.M., and Alymov, M.I., Production of hollow ceramic rods by SHS extrusion, Dokl. Chem., 2019, vol. 484, part 2, pp. 79–81.https://doi.org/10.1134/S0012500819020083

    Article  CAS  Google Scholar 

  37. Varchanis, S., Makrigiorgos, G., Moschopoulos, P., Dimakopoulos, Y., and Tsamopoulos, J., Modelling the rheology of thixotropic elasto-visco-plastic materials, J. Rheol., 2019, vol. 63, pp. 609–639.https://doi.org/10.1122/8.0000196

    Article  CAS  Google Scholar 

  38. Atay, H.Y., Aišman, D., Jirková, H., Behulova, M., and Mašek, B., Use of thixoforming as a manufacturing method for metallic composites, Met. Mater. Int., 2019, vol. 26, pp. 1420–1429.https://doi.org/10.1007/s12540-019-00373-5

    Article  CAS  Google Scholar 

  39. Myachin, Y.V., Darenskaya, E.A., Vaylina, O.Y., Buyakova, S.P., Kulkov, S.N., and Turuntaev, I.V., Structure and properties of steel produced by metal injection molding, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 2, pp. 331–334.

    Article  Google Scholar 

  40. Khil’ko, S.L., Titov, E.V., Fedoseeva, A.A., Petrenko, A.G., and Fedoseev, R.A., On the possibility of using two models of the viscosity superanomaly effect for analyzing the flow curves of structured disperse systems, Colloid J., 2006, vol. 68, no. 1, pp. 106–114.

    Article  Google Scholar 

  41. Dolomatov, M.Yu. and Telin, A.G., Rheodynamic structural model for viscosity anomaly of polymer gels, Neft. Gaz. Novatsii, 2017, no. 4, pp. 48–55.

  42. Kolobov, Yu.R., General aspects and mechanisms of the formation of submicron-, nano-, and ultrafine-grained structures and mechanical properties of metals and alloys during various treatments, Izv. Vyssh. Uchebn. Zaved., Fiz., 2018, vol. 61, no. 4 (724), pp. 11–24.

  43. Stolin, A.M., Khudyaev, S.I., and Buchatskii, L.M., On the theory of a viscosity superanomaly in structured systems, Dokl. Akad. Nauk SSSR, 1978, vol. 243, pp. 430–433.

    Google Scholar 

  44. Bazhin, P.M., Self-propagating high-temperature synthesis under high- temperature shear deformation conditions for the preparation of composite materials and articles based on refractory compounds, Doctoral (Eng.) Dissertation, Moscow, 2019.

  45. Stolin, A.M. and Khudyaev, S.I., Formation of spatially inhomogeneous states of a structured liquid in the viscosity superanomaly region, Dokl. Akad. Nauk SSSR, 1981, vol. 260, no. 5, pp. 1180–1184.

    Google Scholar 

  46. Semenov, A.B., Metallurgy of thixotropic materials in present-day mechanical engineering, Sbornik trudov mezhdunarodnogo kongressa “Kuznets-2019” (Proc. Blacksmith-2019 Int. Congr.), 2019, pp. 146–163.

  47. Tolochko, N.K., Shienok, Yu.A., Myal’dun, A.Z., and Mozzharov, S.E., Rheo- and thixocompaction: novel approaches to solid–liquid materials casting, Lit’e Metall., 2003, no. 2, pp. 39–46.

  48. Aksenenko, A.Yu., Bychkov, S.A., Klimov, V.N., Korobova, N.V., Tarasov, F.E., Frizen, V.E., and Shevchenko, S.Yu., On the effect of crystallization conditions on the structure of thixoworkpieces from cast Al alloys, Metall. Mashinostr., 2013, no. 2, pp. 17–20.

  49. Li, D.Q., Zhang, F., Midson, S.P., Liang, X.K., and Yao, H., Recent developments of rheo-diecast components for transportation markets, Solid State Phenom., 2019, vol. 285, pp. 417–422.

    Article  Google Scholar 

  50. Andrievski, R.A., Brittle nanomaterials: hardness and superplasticity, Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, no. 9, pp. 1222–1227.

    Article  Google Scholar 

  51. Kaibyshev, O.A., Superplasticity of Alloys, Intermetallides and Ceramics, Berlin: Springer, 1992.

    Book  Google Scholar 

  52. Nieh, T.G., Wadsworth, J., and Sherby, O.D., Superplasticity in Metals and Ceramics, Cambridge Solid State Science Series, vol. 14, New York: Cambridge Univ. Press, 1997.

    Book  Google Scholar 

  53. Zaripov, N.G., Kaibyshev, O.A., and Kolmogorov, O.M., Structural superplasticity of Bi2O3-based ceramics, Fiz. Tverd. Tela (S.-Peterburg), 1993, vol. 35, no. 5, pp. 2114–2121.

  54. Valiev, R.Z., New studies of the nanomaterials strength and plasticity paradox, Vestn. Sankt-Peterburgsk. Univ.: Mat. Mekh. Astron., 2020, vol. 7, no. 1, pp. 112–127.

    Google Scholar 

  55. Utyashev, F.Z., Sovremennye metody intensivnoi plasticheskoi deformatsii (State-of-the-Art Methods for Intense Plastic Deformation), Ufa: UGATU, 2008.

  56. Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., and Zhu, Y.T., Producing bulk ultrafine-grained materials by intense plastic deformation, JOM, 2020, vol. 58, no. 4, pp. 33–39.

    Article  Google Scholar 

  57. Chistyakov, P.V., Bylya, O.I., and Akhmetgaleev, A.F., Effects of viscoplastic behavior of materials in the superplasticity regime, Vestn. Nizhegorodsk. Univ. im. N.I. Lobachevskogo, 2011, no. 4, pp. 1855–1856.

  58. Sharifullina, E.R., Shveikin, A.I., and Trusov, P.V., Review of experimental studies of structural superplasticity: microstructural evolution of materials and deformation mechanisms, Vestn. Permsk. Nats. Issled. Politekh. Univ.: Mekh., 2018, no. 3, pp. 103–127.https://doi.org/10.15593/perm.mech/2018.3.11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Stolin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolin, A.M., Bazhin, P.M. & Alymov, M.I. Distinctive Features of the Rheosynthesis of Ceramic and Cermet Materials under Self-Propagating High-Temperature Synthesis Extrusion Conditions. Inorg Mater 58, 205–214 (2022). https://doi.org/10.1134/S0020168522020133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522020133

Keywords:

Navigation