Skip to main content
Log in

Preparation and Characterization of Lithium Niobate Single Crystals Activated with Magnesium and Boron

  • Published:
Inorganic Materials Aims and scope

Abstract—

A technologically feasible process has been proposed for the preparation of homogeneous single-phase magnesium–boron codoped lithium niobate growth charge. It has been used in Czochralski growth of LiNbO3:Mg,B lithium niobate single crystals with a highly uniform dopant distribution. The crystals have been shown to have optical quality. The results of this study are important for designing a process for the preparation of materials with a weak photorefractive effect to be used in nonlinear optics and other areas of science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kuz’minov, Yu.S., Elektroopticheskii i nelineino-opticheskii kristall niobata litiya (Electro-Optic and Nonlinear Optical Lithium Niobate Crystals), Moscow: Nauka, 1987.

  2. Gurzadyan, G.G., Dmitriev, V.G., and Nikogosyan, D.N., Nelineino-opticheskie kristally. Svoistva i primenenie v kvantovoi elektronike (Nonlinear Optical Crystals: Properties and Applications in Quantum Electronics), Moscow: Radio i Svyaz’, 1991.

  3. Gunter, P. and Huignard, J.P., Photorefractive Materials and Their Applications, New York: Springer, 2007.

    Book  Google Scholar 

  4. Sidorov, N.V., Volk, T.R., Mavrin, B.N., and Kalinnikov, V.T., Niobat litiya: defekty, fotorefraktsiya, kolebatel’nyi spektr, polyaritony (Lithium Niobate: Defects, Photorefractive Properties, Vibrational Spectrum, and Polaritons), Moscow: Nauka, 2003.

  5. Volk, T. and Wohleke, M., Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Berlin: Springer, 2008.

    Google Scholar 

  6. Bryan, D.A., Gerson, R., and Tomaschke, H.E., Increased optical damage resistance in lithium niobate, Appl. Phys. Lett., 1984, vol. 44, pp. 847–849. https://doi.org/10.1063/1.94946

    Article  CAS  Google Scholar 

  7. Volk, T.R., Pryalkin, V.I., and Rubinina, N.M., Optical-damage-resistant LiNbO3:Zn crystal, Opt. Lett., 1990, vol. 15, pp. 996–998.https://doi.org/10.1364/OL.15.000996

    Article  CAS  PubMed  Google Scholar 

  8. Qiao, H., Xu, J., Wu, Q., Yu, X., Sun, Q., Zhang, X., Zhang, G., and Volk, T.R., An increase of photorefractive sensitivity in In:LiNbO3 crystal, Opt. Mater., 2003, vol. 23, pp. 269–272. https://doi.org/10.1016/S0925-3467(02)00299-9

    Article  CAS  Google Scholar 

  9. Kong, Y., Wen, J., and Wang, H., New doped lithium niobate crystal with high resistance to photorefraction–LiNbO3:In, Appl. Phys. Lett., 1995, vol. 66, pp. 280–281.https://doi.org/10.1063/1.113517

    Article  CAS  Google Scholar 

  10. Yamamoto, J.K., Kitamura, K., Iyi, N., and Kimura, S., Sc2O3-doped LiNbO3 grown by the float zone method, J. Cryst. Growth, 1992, vol. 121, no. 3, pp. 522–526.https://doi.org/10.1016/0022-0248(92)90165-F

    Article  CAS  Google Scholar 

  11. Li, S., Liu, S., Kong, Y., Deng, D., Gao, G., Li, Y., Gao, H., Zhang, L., Huang, Z., Chen, S., and Xu, J., The optical damage resistance and absorption spectra of LiNbO3:Hf crystals, J. Phys.: Condens. Matter, 2006, vol. 18, pp. 3527–3534.

    CAS  Google Scholar 

  12. Syui, A.V., Nonlinear optical effects with broadband emission in lithium niobate crystals, Extended Abstract of Doctoral (Phys.–Math.) Dissertation, Khabarovsk: DVGUPS, 2013.

  13. Rahman, M.K., Riscob, B., and Bhatt, R., Investigations on crystalline perfection, Raman spectra and optical characteristics of transition metal (Ru) co-doped Mg:LiNbO3 single crystals, ACS OMEGA, 2021, vol. 6, no. 16, pp. 10807–10815.https://doi.org/10.1021/acsomega.1c00452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kong, T., Luo, Y., Wang, W., Kong, H., Fan, Z., and Liu, H., Enhanced ultraviolet damage resistance in magnesium doped lithium niobate crystals through zirconium co-doping, Materials, 2021, vol. 14, no. 4, paper 1017.https://doi.org/10.3390/ma14041017

  15. Zhou, L., Liu, Y., Lou, H., D, Y., Xie, G., Zhu, Z., Deng, Z., Luo, D., Gu, C., and Chen, H., Octave mid-infrared optical frequency comb from Er:fiber-laser-pumped aperiodically poled Mg:LiNbO3, Opt. Lett., 2020, vol. 45, no. 23, pp. 6458–6461.https://doi.org/10.1364/OL.410958

    Article  CAS  PubMed  Google Scholar 

  16. Palatnikov, M.N., Sandler, V.A., Sidorov, N.V., Masloboeva, S.M., and Makarova, O.V., Study of electrical characteristics of crystals of homogeneously doped LiNbO3:Zn,Mg in the temperature range of 450–900 K, Tech. Phys., 2020, vol. 65, no. 12, pp. 1987–1993.https://doi.org/10.1134/S1063784220120208

    Article  CAS  Google Scholar 

  17. Ma, C., Yu, S., Lu, F., Liu, K., Xu, Y., and Ma, C., Enhancement of near-infrared photoluminescence in Mg:Er:LiNbO3 containing Au nanoparticles synthesized by direct ion implantation, Nanotechnology, 2020, vol. 31, no. 33, paper 335206.https://doi.org/10.1088/1361-6528/ab8f4e

  18. Long, S., Yang, M., Ma, D., Zhu, Y., Lin, S., and Wang, B., Enhanced red emissions and higher quenching temperature based on the intervalence charge transfer in Pr3+ doped LiNbO3 with Mg2+ incorporation, Opt. Mater. Express, 2019, vol. 9, no. 3, pp. 1062–1071.https://doi.org/10.1364/OME.9.001062

    Article  CAS  Google Scholar 

  19. Galutskii, V.V., Stroganova, E.V., Yakovenko, N.A., Sudarikov, K.V., Rasseikin, D.A., and Yurova, N.A., Structure of the LiNbO3:Mg,Cr crystal and its properties at visible and terahertz wavelengths, J. Opt. Technol., 2018, vol. 85, no. 4, pp. 250–254.https://doi.org/10.1364/JOT.85.000250

    Article  CAS  Google Scholar 

  20. Dai, L., Liu, C., Tan, C., Yan, Z., and Xu, Y., Optical properties of Mg2+, Yb3+, and Ho3+ tri-doped LiNbO3 crystals, Chin. Phys. B, 2017, vol. 26, no. 4, paper 044207.https://doi.org/10.1088/1674-1056/26/4/044207

  21. Fan, M., Li, T., Zhao, S., Liu, H., Sang, Y., Li, G., Li, D., Yang, K., Qiao, W., and Li, S., Experimental and theoretical investigation on passively Q-switched laser action in c-cut Nd:MgO:LiNbO3, Appl. Opt., 2015, vol. 54, no. 31, pp. 9354–9358.https://doi.org/10.1364/AO.54.009354

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, T., Wang, B., Ling, F., Fang, S.Q., and Xu, Y., Growth and optical property of Mg, Fe co-doped near-stoichiometric LiNbO3 crystal, Mater. Chem. Phys., 2004, vol. 83, pp. 350–353.

    Article  CAS  Google Scholar 

  23. Yang, C., Tu, X., Wang, S., Xiong, K., Chen, Y., Zheng, Y., and Shi, E., Growth and properties of Pr3+ doped LiNbO3 crystal with Mg2+ incorporation: a potential material for quasi-parametric chirped pulse amplification, Opt. Mater., 2020, vol. 105, paper 109893.https://doi.org/10.1016/j.optmat.2020.109893

  24. Masloboeva, S.M., Biryukova, I.V., Palatnikov, M.N., and Teplyakova, N.A., Magnesium-and-zinc-doped lithium niobate crystals: preparation and characterization, Russ. J. Inorg. Chem., 2020, vol. 65, no. 6, pp. 924–931.https://doi.org/10.1134/S0036023620060108

    Article  CAS  Google Scholar 

  25. Masloboeva, S.M., Palatnikov, M.N., Arutyunyan, L.G., and Ivanenko, D.V., Methods for the preparation of a doped lithium niobate growth charge, Izv. S.-Peterburg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2017, no. 38 (64), pp. 34–43.

  26. Masloboeva, S.M., Sidorov, N.V., Palatnikov, M.N., Arutyunyan, L.G., and Chufyrev, P.G., Niobium(V) oxide doped with Mg2+ and Gd3+ cations: synthesis and structural studies, Russ. J. Inorg. Chem., 2011, vol. 56, no. 8, pp. 1194–1198.

    Article  CAS  Google Scholar 

  27. Masloboeva, S.M., Kadyrova, G.I., and Arutyunyan, L.G., Synthesis of Nb2O5〈B〉 solid precursors and LiNbO3〈B〉 batches and their phase compositions, Russ. J. Inorg. Chem., 2016, vol. 61, no. 4, pp. 412–419. https://doi.org/10.1134/S0036023616040148

    Article  CAS  Google Scholar 

  28. Palatnikov, M.N., Biryukova, I.V., Makarova, O.V., Efremov, V.V., Kravchenko, O.E., and Kalinnikov, V.T., Preparation and properties of lithium niobate crystals grown from boron-doped melts of congruent composition, Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, Khim. Materaloved., 2015, no. 5 (31), pp. 434–438.

  29. Masloboeva, S.M., Efremov, I.N., Biryukova, I.V., and Palatnikov, M.N., Growth and characterization of a boron-doped lithium niobate single crystal, Inorg. Mater., 2020, vol. 56, no. 11, pp. 1147–1152.https://doi.org/10.1134/S0020168520110072

    Article  CAS  Google Scholar 

  30. Pagola, S., Carbonio, R.E., Alonso, J.A., and Fernandez-Diaz, M.T., Crystal structure refinement of MgNb2O6 columbite from neutron powder diffraction data and study of the ternary system MgO–Nb2O5–NbO, with evidence of formation of new reduced pseudobrookite Mg5 – xNb4 + xO15 – δ (1.14 ≤ x ≤ 1.60) phases, J. Solid State Chem., 1997, vol. 134, pp. 76–84.https://doi.org/10.1006/jssc.1997.7538

    Article  CAS  Google Scholar 

  31. Kato, K., Structure refinement of H-Nb2O5, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1976, vol. 32, pp. 764–767.https://doi.org/10.1107/S0567740876003944

    Article  Google Scholar 

  32. Hsu, R., Maslen, E.N., Boulay, D., and Ishizawa, N., Synchrotron X-ray studies of LiNbO3 and LiTaO3, Acta Crystallogr., Sect. B: Struct. Sci., 1997, vol. 53, pp. 420–428.https://doi.org/10.1107/S010876819600777X

    Article  Google Scholar 

  33. Biryukova, I.V., High-temperature synthesis and modification of properties of ferroelectric lithium niobate and lithium tantalate single crystals and growth charges, Cand. Sci. (Eng.) Dissertation, Apatity, 2005.

  34. Palatnikov, M.N., Biryukova, I.V., Makarova, O.V., Efremov, V.V., Kravchenko, O.E., Skiba, V.I., Sidorov, N.V., and Efremov, I.N., Growth of heavily doped LiNbO3: Zn crystals, Inorg. Mater., 2015, vol. 51, no. 4, pp. 375–379.https://doi.org/10.1134/S0020168515040123

    Article  CAS  Google Scholar 

  35. Makarova, O.V., Palatnikov, M.N., Biryukova, I.V., and Sidorov, N.V., Impact of a dopant impurity electronic structure on physical properties, defect structure, and features of lithium niobate doping technology, Tech. Phys., 2019, vol. 64, no. 12, pp. 1872–1878.https://doi.org/10.1134/S1063784219120168

    Article  CAS  Google Scholar 

  36. Palatnikov, M.N., Biryukova, I.V., Makarova, O.V., Sidorov, N.V., and Efremov, V.V., Growth of large LiNbO3〈Mg〉 crystals, Inorg. Mater., 2013, vol. 49, no. 3, pp. 288–295.https://doi.org/10.1134/S002016851303014X

    Article  CAS  Google Scholar 

  37. Palatnikov, M.N., Sidorov, N.V., Makarova, O.V., and Biryukova, I.V., Fundamental’nye aspekty tekhnologii sil’no legirovannykh kristallov niobata litiya (Fundamental Aspects of the Technology of Heavily Doped Lithium Niobate Crystals), Apatity: Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Masloboeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masloboeva, S.M., Efremov, I.N., Biryukova, I.V. et al. Preparation and Characterization of Lithium Niobate Single Crystals Activated with Magnesium and Boron. Inorg Mater 57, 1271–1278 (2021). https://doi.org/10.1134/S0020168521120104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521120104

Keywords:

Navigation