Skip to main content
Log in

Ceramics Based on CaSO4⋅2H2O Powder Synthesized from Ca(NO3)2 and (NH4)2SO4

  • Published:
Inorganic Materials Aims and scope

Abstract

Ceramics consisting of anhydrous calcium sulfate, CaSO4, after firing in the range 800–1000°C have been prepared from calcium sulfate dihydrate (CaSO4⋅2H2O) powder synthesized using aqueous 1 M calcium nitrate (Ca(NO3)2) and ammonium sulfate ((NH4)2SO4) solutions. In the preparation of the powder, the precipitate was washed four times with distilled water to remove ammonium nitrate, NH4NO3, a reaction by-product and, after drying, the powder was disaggregated in acetone. The synthesized CaSO4⋅2H2O powder particles had an elongated prismatic shape both before and after disaggregation. After firing at 800, 900, and 1000°C, the microstructure of the ceramics based on the synthesized CaSO4⋅2H2O powder free of reaction by-products contained sintered elongated polycrystalline structures, confirming that the ceramics inherited the microstructure of the starting powder. Ceramics consisting of anhydrous calcium sulfate, CaSO4, can be recommended for the fabrication of implants for bone tissue defect repair by regenerative medicine methods because they are biocompatible and bioresorbable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Thomas, M.V. and Puleo, D.A., Calcium sulfate: properties and clinical applications, J. Biomed. Mater. Res., 2009, vol. 88, no. 2, pp. 597–610. https://doi.org/10.1002/jbm.b.31269

    Article  CAS  Google Scholar 

  2. Peltier, L.F., The use of plaster of Paris to fill defects in bone, Clin. Orthop. Relat. Res., 1961, vol. 21, pp. 1–31. https://journals.lww.com/clinorthop/Citation/1961/ 00210/The_Use_of_Plaster_of_Paris_To_Fill_Defects_in.1.aspx

  3. Hsu, H.J., Waris, R.A., Ruslin, M., Lin, Y.H., Chen, C.S., and Ou, K.L., An innovative α-calcium sulfate hemihydrate bioceramic as a potential bone graft substitute, J. Am. Ceram. Soc., 2018, vol. 101, no. 1, pp. 419–427. https://doi.org/10.1111/jace.15181

    Article  CAS  Google Scholar 

  4. Smirnov, V.V., Goldberg, M.A., Khairutdinova, D.R., Antonova, O.S., Smirnov, S.V., Konovalov, A.A., and Barinov, S.M., Synthesis and properties of bone cement materials in the calcium phosphate–calcium sulfate system, Inorg. Mater., 2017, vol. 53, no. 10, pp. 1075–1079. https://doi.org/10.1134/S0020168517100132

    Article  CAS  Google Scholar 

  5. Vallet-Regí, M. and Salinas, A.J., Ceramics as bone repair materials, in Bone Repair Biomaterials, Cambridge: Woodhead, 2019, pp. 141–178. https://doi.org/10.1016/B978-0-08-102451-5.00006-8

  6. Chen, Z., Kang, L., Meng, Q.Y., Liu, H., Wang, Z., Guo, Z., and Cui, F.Z., Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration, Mater. Sci. Eng., C, 2014, vol. 45, pp. 94–102. https://doi.org/10.1016/j.msec.2014.08.060

    Article  CAS  Google Scholar 

  7. Hsu, P.Y., Chang, M.P., Tuan, W.H., and Lai, P.L., Effect of physical and chemical characteristics on the washout resistance of calcium sulfate pellets, Ceram. Int., 2018, vol. 44, no. 8, pp. 8934–8939. https://doi.org/10.1016/j.ceramint.2018.02.088

    Article  CAS  Google Scholar 

  8. Mishra, R.K., Kanhaiya, K., Winetrout, J.J., Flatt, R.J., and Heinz, H., Force field for calcium sulfate minerals to predict structural, hydration, and interfacial properties, Cem. Concr. Res., 2021, vol. 139, paper 106262.https://doi.org/10.1016/j.cemconres.2020.106262

  9. Chang, M.P., Hsu, H.C., Tuan, W.H., and Lai, P.L., A feasibility study regarding the potential use of silica-doped calcium sulfate anhydrite as a bone void filler, J. Med. Biol. Eng., 2017, vol. 37, no. 6, pp. 879–886. https://doi.org/10.1007/s40846-017-0253-1

    Article  Google Scholar 

  10. Asadi-Eydivand, M., Solati-Hashjin, M., Shafiei, S.S., Mohammadi, S., Afezi, M., and Abu Osman, N.A., Structure, properties, and in vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing, PloS ONE, 2016, vol. 11, no. 3., paper e0151216. https://doi.org/10.1371/journal.pone.0151216

  11. Chang, M.P., Tsung, Y.C., Hsu, H.C., Tuan, W.H., and Lai, P.L., Addition of a small amount of glass to improve the degradation behavior of calcium sulfate bioceramic, Ceram. Int., 2015, vol. 41, no. 1, pp. 1155–1162. https://doi.org/10.1016/j.ceramint.2014.09.043

    Article  CAS  Google Scholar 

  12. Zhou, J., Gao, C., Feng, P., Xiao, T., Shuai, C., and Peng, S., Calcium sulfate bone scaffolds with controllable porous structure by selective laser sintering, J. Porous Mater., 2015, vol. 22, no. 5, pp. 1171–1178. https://doi.org/10.1007/s10934-015-9993-x

    Article  CAS  Google Scholar 

  13. Kuo, S.T., Wu, H.W., Tuan, W.H., Tsai, Y.Y., Wang, S.F., and Sakka, Y., Porous calcium sulfate ceramics with tunable degradation rate, J. Mater. Sci.: Mater. Med., 2012, vol. 23, no. 10, pp. 2437–2443. https://doi.org/https://doi.org/10.1007/s10856-012-4704-5

    CAS  Google Scholar 

  14. Isa, K. and Okuno, H., Thermal decomposition of calcium sulfate dihydrate under self-generated atmosphere, Bull. Chem. Soc. Jpn., 1982, vol. 55, no. 12, pp. 3733–3737. https://doi.org/10.1246/bcsj.55.3733

    Article  CAS  Google Scholar 

  15. Freyer, D. and Voigt, W., Crystallization and phase stability of CaSO4 and CaSO4-based salts, Monatsh. Chem., 2003, vol. 134, no. 5, pp. 693–719. https://doi.org/10.1007/s00706-003-0590-3

    Article  CAS  Google Scholar 

  16. Safronova, T.V., Putlyaev, V.I., Kurbatova, S.A., Shatalova, T.B., Larionov, D.S., Kozlov, D.A., and Evdokimov, P.V., Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1177–1194. https://doi.org/10.1134/S0020168515110096

    Article  CAS  Google Scholar 

  17. Safronova, T.V., Putlyaev, V.I., Knot’ko, A.V., Krut’ko, V.K., Musskaya, O.N., Ulasevich, S.A., Vorob’eva, N.A., and Telitsin, V.D., Calcium phosphate ceramic in the system Ca(PO3)2–Ca2P2O7, Glass Ceram., 2018, vol. 75, nos. 7–8, pp. 279–286. https://doi.org/10.1007/s10717-018-0072-z

    Article  CAS  Google Scholar 

  18. Heijnen, W.M.M. and Hartman, P., Structural morphology of gypsum (CaSO4⋅2H2O), brushite (CaHPO4⋅2H2O) and pharmacolite (CaHAsO4⋅2H2O), J. Cryst. Growth, 1991, vol. 108, nos. 1–2, pp. 290–300. https://doi.org/10.1016/0022-0248(91)90376-G

    Article  CAS  Google Scholar 

  19. Luo, K., Li, C., Xiang, L., Li, H., and Ning, P., Influence of temperature and solution composition on the formation of calcium sulfates, Particuology, 2010, vol. 8, no. 3, pp. 240–244. https://doi.org/10.1016/j.partic.2010.01.005

    Article  CAS  Google Scholar 

  20. Andrianov, N.T., Balkevich, V.L., Belyakov, A.V., Vlasov, A.S., Guzman, I.Ya., Lukin, E.S., Mosin, Yu.M., and Skidan, B.S., Khimicheskaya tekhnologiya keramiki: uchebnoe posobie dlya vuzov (Chemical Technology of Ceramics: A Learning Guide for Higher Education Institutions), Guzman, I.Ya., Eds., Moscow: OOO Rif Stroimaterialy, 2012.

    Google Scholar 

  21. PDF-4+ 2010 (Database), Newtown Square: International Centre for Diffraction Data, 2010. http://www.icdd.com/products/pdf2.htm

Download references

ACKNOWLEDGMENTS

In this study, we used equipment purchased through the Development of Moscow State University Program.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 20-03-00550) and the Russian Federation President’s Grants Council (Support to the Russian Federation Leading Scientific Schools Program, grant no. NSh-2726.2020.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, T.V., Belokozenko, M.A., Yahyoev, S.O. et al. Ceramics Based on CaSO4⋅2H2O Powder Synthesized from Ca(NO3)2 and (NH4)2SO4. Inorg Mater 57, 867–873 (2021). https://doi.org/10.1134/S0020168521080112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521080112

Keywords:

Navigation