Skip to main content
Log in

Combustion Synthesis of Highly Dispersed Zinc Oxide

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper reports the synthesis of highly dispersed zinc oxide via combustion of a mixture of zinc nitrate or acetate and glucose or cellulose at 800°C. Heat treatment of such a reaction mixture has been shown to lead to the formation of highly dispersed zinc oxide with various particle sizes and shapes, depending on the carbohydrates used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Panasyuk, G.P., Azarova, L.A., Belan, V.N., Semenov, E.A., Danchevskaya, M.N., Voroshilov, I.L., Kozerozhets, I.V., Pershikov, S.A., and Kharatyan, S.Yu., Methods for high-purity aluminum oxide production for growth of leucosapphire crystals (review), Theor. Found. Chem. Eng., 2019, vol. 53, no. 4, pp. 596–601.https://doi.org/10.1134/S0040579518050196

    Article  CAS  Google Scholar 

  2. Panasyuk, G.P., Kozerozhets, I.V., Semenov, E.A., Danchevskaya, M.N., Azarova, L.A., and Belan, V.N., Thermodynamics and kinetics of γ-Al2O3 and AlOOH transformations under hydrothermal conditions, Inorg. Mater., 2019, vol. 55, no. 9, pp. 920–928.https://doi.org/10.1134/S0020168519090127

    Article  Google Scholar 

  3. Panasyuk, G.P., Kozerozhets, I.V., Semenov, E.A., Danchevskaya, M.N., Azarova, L.A., and Belan, V.N., Mechanism of phase transformations of γ-Al2O3 and Al(OH)3 into boehmite (AlOOH) during hydrothermal treatment, Inorg. Mater., 2019, vol. 55, no. 9, pp. 929–933.https://doi.org/10.1134/S0020168519090139

    Article  Google Scholar 

  4. Park, J., Shin, M., and Yi, J.S., Comparative study of aluminum and nickel contact electrodes for indium–tin–zinc oxide thin film transistors using oxygen vacancy diffusion model, Mater. Sci. Semicond. Process., 2020, vol. 120, paper 105253.https://doi.org/10.1016/j.mssp.2020.105253

  5. Mishra, S., Kumar, K., Patra, A., Chowdhury, A., and Roy, A., Phase integrity of zinc oxide doped zirconia under low compacting pressure, J. Alloys Compd., 2020, vol. 843, paper 155927.https://doi.org/10.1016/j.jallcom.2020.155927

  6. Kumar, A., Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor, J. Mol. Struct., 2020, vol. 1220, paper 128654.https://doi.org/10.1016/j.molstruc.2020.128654

  7. Panasyuk, G.P., Semenov, E.A., Kozerozhets, I.V., Azarova, L.A., Belan, V.N., Danchevskaya, M.N., Nikiforova, G.E., Voroshilov, I.L., and Pershikov, S.A., New method of synthesis of nanosized boehmite (AlOOH) powders with a low impurity content, Dokl. Chem., 2018, vol. 483, no. 1, pp. 272–274.https://doi.org/10.1134/S0012500818110022

    Article  CAS  Google Scholar 

  8. Kozerozhets, I.V., Panasyuk, G.P., Semenov, E.A., Voroshilov, I.L., Azarova L.A., and Belan, V.N., Mechanism of the conversion of γ-Al2O3 nanopowder into boehmite under hydrothermal conditions, Inorg. Mater., 2020, vol 56, no. 7, pp. 716—722.https://doi.org/10.1134/S0020168520070092

    Article  CAS  Google Scholar 

  9. Kozerozhets, I.V., Panasyuk, G.P., Semenov, E.A., Vasil’ev, M.G., Ivakin, Yu.D., and Danchevskaya, M.N., How acid medium affects the hydrothermal synthesis of boehmite, Russ. J. Inorg. Chem., 2020, vol. 65, no. 10, pp. 1529–1534.https://doi.org/10.1134/S0036023620100149

    Article  CAS  Google Scholar 

  10. Zhang, C., Zhang, H.Y., Hao, H.Y., Dong, J.J., Xing, J., Liu, H., Shi, L., Zhong, T.T., Tang, K.P., and Xu, X., Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells, Acta Phys. Sin., 2020, vol. 69, paper 178101.https://doi.org/10.7498/aps.69.20200555

  11. Wu, Y.J., Cai, L.P., Mei, C.T., Lam, S.S., Sonne, C., Shi, S.Q., and Xia, C.L., Development and evaluation of zinc oxide–blended kenaf fiber biocomposite for automotive applications, Mater. Today Commun., 2020, vol. 24, no. 101008.https://doi.org/10.1016/j.mtcomm.2020.101008

  12. Wang, P., Jiang, L., and Han, R.X., Biosynthesis of zinc oxide nanoparticles and their application for antimicrobial treatment of burn wound infections, Mater. Res. Express, 2020, vol. 7, no. 9, paper 095010.https://doi.org/10.1088/2053-1591/abb150

  13. Soares, A.M.B.F., Goncalves, L.M.O., Ferreira, R.D.S., de Souza, J.M., Fangueiro, R., Alves, M.M.M., Carvalho, F.A.A., Mendes, A.N., and Cantanhede, W., Immobilization of papain enzyme on a hybrid support containing zinc oxide nanoparticles and chitosan for clinical applications, Carbohydr. Res., 2020, vol. 243, paper 116498.https://doi.org/10.1016/j.carbpol.2020.116498

  14. Dharmalingam, K. and Anandalakshmi, R., Functionalization of cellulose-based nanocomposite hydrogel films with zinc oxide complex and grapefruit seed extract for potential applications in treating chronic wounds, Polymer, 2020, vol. 202, paper 122620.https://doi.org/10.1016/j.polymer.2020.122620

  15. Cruz, D.M., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Diaz, J.L., Guisbiers, G., and Webster, T.J., Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review, J. Phys. Mater., 2020, vol. 3, paper 034005.https://doi.org/10.1088/2515-7639/ab8186

  16. Taran, O.P., Ayusheev, A.B., Ogorodnikova, O.L., Prosvirin, I.P., Isupova, L.A., and Parmon, V.N., Perovskite-like catalysts LaBO3 (B = Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol, Appl. Catal., B, 2016, vol. 180, no. 1, pp. 86–93.https://doi.org/10.1016/j.apcatb.2015.05.055

    Article  CAS  Google Scholar 

  17. Du, W.P., Xu, S., Tang, C., Jia, A.P., Luo, M.F., and Lu, J.Q., High-performance CrxFe2 – xO3 mixed oxides for catalytic combustion of dichloromethane, Catal. Commun., 2020, vol. 146, no. 106126, pp. 1529–1534.https://doi.org/10.1016/j.catcom.2020.106126

    Article  CAS  Google Scholar 

  18. Sarvestani, N.S., Abbaspour-Fard, M.H., Tabasizadeh, M., Nayebzadeh, H., Van, T.C., Jafar, M., Ristovski, Z., and Brown, R.J., Synthesis of magnetite Mg–Fe mixed metal oxide nanocatalyst by urea-nitrate combustion method with optimal fuel ratio for reduction of emissions in diesel engines, J. Alloys Compd., 2020, vol. 838, paper 155627.https://doi.org/10.1016/j.jallcom.2020.155627

  19. Wang, Y., Wang, G., Deng, W., Han, J., Qin, L.B., Zhao, B., Guo, L.M., and Xing, F.T., Study on the structure–activity relationship of Fe–Mn oxide catalysts for chlorobenzene catalytic combustion, Chem. Eng. J., 2020, vol. 395, paper 125172.https://doi.org/10.1016/j.cej.2020.125172

  20. Panasyuk, G.P., Kozerozhets, I.V., Semenov, E.A., Azarova, L.A., Belan, V.N., and Danchevskaya, M.N., A New method for producing a nanosized γ-Al2O3 powder, Russ. J. Inorg. Chem., 2018, vol. 63, no. 10, pp. 1303–1308.https://doi.org/10.1134/S0036023618100157

    Article  CAS  Google Scholar 

  21. Moezzi, A., Lee, PS., McDonagh, A.M., and Cortie, M.B., On the thermal decomposition of zinc hydroxide nitrate, Zn5(OH)8(NO3)2 ⋅ 2H2O, J. Solid State Chem., 2020, vol. 286, paper 121311.https://doi.org/10.1016/j.jssc.2020.121311

  22. Aqeel, T. and Greer, H.F., Quantum-sized zinc oxide nanoparticles synthesised within mesoporous silica (SBA-11) by humid thermal decomposition of zinc acetate, Crystals, 2020, vol. 10, no. 6, paper 549.https://doi.org/10.3390/cryst10060549

  23. Evans, R.J., Wang, D.N., Agblevor, F.A., Chum, H.L., and Baldwin, S.D., Mass spectrometric studies of the thermal decomposition of carbohydrates using C-13-labeled cellulose and glucose, Carbohydr. Res., 1996, vol. 281, no. 2, pp. 219–235.https://doi.org/10.1016/0008-6215(95)00355-X

    Article  CAS  PubMed  Google Scholar 

  24. Volkov, P.V., Rozhkova, A.M., Pravilnikov, A.G., Andrianov, R.M., Dotsenko, G.S., Bekkarevich, A.O., Koshelev, A.V., Okunev, O.N., Zorov, I.N., and Sinitsin, A.P., Production of enzyme preparations on the basis of penicillum canescens recombinant strains with a high ability for the hydrolysis of plant materials, Appl. Biochem. Microbiol., 2012, vol. 48, no. 1, pp. 58–64.https://doi.org/10.1134/S000368381201019X

    Article  CAS  Google Scholar 

  25. Merlini, A., Claumann, C., Zibetti, A.W., Coirolo, A., Rieg, T., and Machado, R.A.F., Kinetic study of the thermal decomposition of cellulose nanocrystals with different crystal structures and morphologies, Ind. Eng. Chem. Res., 2020, vol. 59, no. 30, pp. 13428–13439.https://doi.org/10.1021/acs.iecr.0c01444

    Article  CAS  Google Scholar 

  26. Ivakin, Yu.D. and Danchevskaya, M.N., Analysis of recrystallization of fine-crystalline corundum in a supercritical water medium using the lognormal particle size distribution function, Russ. J. Phys. Chem. B, 2018, pp. 1205–1211.https://doi.org/10.1134/S1990793118080055

  27. Marikutsa, A.V., Opredelenie svoistv poverkhnosti veshchestv metodami termoprogrammiruemogo analiza. Uchebno-metodicheskoe posobie (Investigation of Surface Properties of Substances by Temperature-Programmed Analysis Techniques: An Educational and Methodological Guidebook), Moscow, 2020, pp. 1–36.

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kozerozhets.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozerozhets, I.V., Panasyuk, G.P., Semenov, E.A. et al. Combustion Synthesis of Highly Dispersed Zinc Oxide. Inorg Mater 57, 592–597 (2021). https://doi.org/10.1134/S0020168521060054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521060054

Keywords:

Navigation