Skip to main content
Log in

Desilicidation of the Ti3SiC2 MAX Phase in a CO and SiO Atmosphere

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the desilicidation of Ti3SiC2 MAX phase powder at 1600°C in a CO + xSiO (x = 0, 1, 1.5, 2, 3) gas atmosphere. The required gaseous atmosphere was generated using granulated powder mixtures containing commercial carbon, TiO2, SiO2, and SiC, which released CO and SiO gases during heating as a result of oxide reduction reactions. Ti3SiC2 desilicidation was sensitive to the gas phase composition and occurred only if the CO : SiO ratio exceeded 1 : 3 (x < 3). The Ti3SiC2 desilicidation process was shown to be reverse of TiC silicidation with SiO gas and could be described by the following chemical reaction scheme: Ti3SiC2 + CO(g) = 3TiC + SiO(g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Barsoum, M.W., The Mn + 1AXn phases: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, nos. 1–4, pp. 201–281.https://doi.org/10.1016/S0079-6786(00)00006-6

  2. Sun, Z., Progress in research and development on MAX phases: a family of layered ternary compounds, Int. Mater. Rev., 2011, vol. 56, no. 3, pp. 143–166.https://doi.org/10.1179/1743280410Y.0000000001

    Article  CAS  Google Scholar 

  3. Barsoum, M.W. and Radovic, M., Elastic and mechanical properties of the MAX phases, Annu. Rev. Mater. Res., 2011, vol. 41, pp. 195–227.https://doi.org/10.1146/annurev-matsci-062910-100448

    Article  CAS  Google Scholar 

  4. Zhang, H., Bao, Y., and Zhou, Y., Current status in layered ternary carbide Ti3SiC2, a review, J. Mater. Sci. Technol., 2009, vol. 25, no. 1, pp. 1–38.

    Article  Google Scholar 

  5. Barsoum, M.W., MAX Phases: Properties of Machinable Carbides and Nitrites, Weinheim: Wiley–VCH, 2013.

  6. Istomin, P., Istomina, E., Nadutkin, A., Leonov, A., Kaplan, M., and Presniakov, M., Fabrication of Ti3SiC2 and Ti4SiC3 MAX phase ceramics through reduction of TiO2 with SiC, Ceram. Int., 2017, vol. 43, pp. 16128–16135.https://doi.org/10.1016/j.ceramint.2017.08.180

    Article  CAS  Google Scholar 

  7. Racault, C., Langlais, F., and Naslain, R., Solid-state synthesis and characterization of the ternary phase Ti3SiC2, J. Mater. Sci., 1994, vol. 29, pp. 3384–3392.

    Article  CAS  Google Scholar 

  8. Zhang, H., Zhou, Y., Bao, Y., and Li, M., Titanium silicon carbide pest induced by nitridation, J. Am. Ceram. Soc., 2008, vol. 91, pp. 494–499.https://doi.org/10.1111/j.1551-2916.2007.02018.x

    Article  CAS  Google Scholar 

  9. Barsoum, M.W. and El-Raghy, T., Oxidation of Ti3SiC2 in air, J. Electrochem. Soc., 1997, vol. 144, pp. 2508–2516.

    Article  CAS  Google Scholar 

  10. Sun, Z., Zhou, Y., and Li, M., High temperature oxidation behavior of Ti3SiC2-based material in air, Acta Mater., 2001, vol. 49, pp. 4347–4353.https://doi.org/10.1016/S1359-6454(01)00247-6

    Article  CAS  Google Scholar 

  11. Zhang, H., Zhou, Y., Bao, Y., and Wang, J., Oxidation behavior of bulk Ti3SiC2 at intermediate temperatures in dry air, J. Mater. Res., 2006, vol. 21, pp. 402–408.https://doi.org/10.1557/jmr.2006.0046

    Article  CAS  Google Scholar 

  12. Zhang, H., Shen, S., Liu, X., Wang, Z., Jiang, Y., and He, Y., Oxidation behavior of porous Ti3SiC2 prepared by reactive synthesis, Trans. Nonferrous Met. Soc. China, 2018, vol. 28, pp. 1774–1783.https://doi.org/10.1016/S1003-6326(18)64821-6

    Article  CAS  Google Scholar 

  13. Zhang, H., Presser, V., Berthold, C., Nickel, K.G., Wang, X., Raisch, C., Chassé, T., He, L., and Zhou, Y., Mechanisms and kinetics of the hydrothermal oxidation of bulk titanium silicon carbide, J. Am. Ceram. Soc., 2010, vol. 93, pp. 1148–1155.https://doi.org/10.1111/j.1551-2916.2009.03570.x

    Article  CAS  Google Scholar 

  14. Ward, J., Bowden, D., Prestat, E., Holdsworth, S., Stewart, D., Barsoum, M.W., Preuss, M., and Frankel, P., Corrosion performance of Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC MAX phases in simulated primary water conditions, Corros. Sci., 2018, vol. 139, pp. 444–453.https://doi.org/10.1016/j.corsci.2018.04.034

    Article  CAS  Google Scholar 

  15. Jung, Y.-I., Park, D.-J., Park, J.-H., Park, J.-Y., Kim, H.-G., and Koo, Y.-H., Effect of TiSi2/Ti3SiC2 matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties, J. Eur. Ceram. Soc., 2016, vol. 36, pp. 1343–1348.https://doi.org/10.1016/j.jeurceramsoc.2016.01.015

    Article  CAS  Google Scholar 

  16. Radhakrishnan, R., Williams, J., and Akinc, M., Synthesis and high-temperature stability of Ti3SiC2, J. Alloys. Compd., 1999, vol. 285, pp. 85–88.

    Article  CAS  Google Scholar 

  17. Nguyen, T.D., Park, S.-W., and Lee, D.-B., Corrosion of Ti3SiC2 in an Ar–1% SO2 atmosphere between 800 and 1100°C, J. Ceram. Proc. Res., 2009, vol. 10, pp. 355–358.

    Google Scholar 

  18. Low, I.M., Oo, Z., and Prince, K.E., Effect of vacuum annealing on the phase stability of Ti3SiC2, J. Am. Ceram. Soc., 2007, vol. 90, pp. 2610–2614.https://doi.org/10.1111/j.1551-2916.2007.01817.x

    Article  Google Scholar 

  19. Istomin, P., Istomina, E., Nadutkin, A., and Grass, V., Corrosion of Ti3SiC2 ceramics in a high-temperature CO environment, Mater. Lett., 2020, vol. 259, paper 126763.https://doi.org/10.1016/j.matlet.2019.126763

  20. Istomin, P.V., Nadutkin, A.V., Ryabkov, Yu.I., and Goldin, B.A., Preparation of Ti3SiC2, Inorg. Mater., 2006, vol. 42, no. 3, pp. 250–255.https://doi.org/10.1134/S0020168506030071

    Article  CAS  Google Scholar 

  21. Kraus, W. and Nolze, G., Powder cell – a program for the representation and manipulation of crystal structures and calculation of the X-ray powder patterns, J. Appl. Crystallogr., 1996, vol. 29, pp. 301–303.https://doi.org/10.1107/S0021889895014920

    Article  CAS  Google Scholar 

  22. Istomina, E.I., Istomin, P.V., and Nadutkin, A.V., Preparation of biomorphic SiC, Inorg. Mater., 2013, vol. 49, no. 10, pp. 984–987.https://doi.org/10.1134/S0020168513090070

    Article  CAS  Google Scholar 

  23. Istomin, P., Istomina, E., Nadutkin, A., Grass, V., and Presniakov, M., Synthesis of a bulk Ti4SiC3 MAX phase by reduction of TiO2 with SiC, Inorg. Chem., 2016, vol. 55, pp. 11050–11056.https://doi.org/10.1021/acs.inorgchem.6b01601

    Article  CAS  PubMed  Google Scholar 

  24. Istomina, E.I., Istomin, P.V., Nadutkin, A.V., Grass, V.E., and Bogdanova, A.S., Optimization of the carbosilicothermic synthesis of the Ti4SiC3 MAX phase, Inorg. Mater., 2018, vol. 54, no. 6, pp. 528–536.https://doi.org/10.1134/S0020168518060055

    Article  CAS  Google Scholar 

  25. Istomin, P., Istomina, E., Nadutkin, A., and Grass, V., Effect of silicidation pretreatment with gaseous SiO on sinterability of TiC powders, Int. J. Refract. Met. Hard Mater., 2016, vol. 57, pp. 12–18.https://doi.org/10.1016/j.ijrmhm.2016.02.004

    Article  CAS  Google Scholar 

  26. Istomina, E.I., Istomin, P.V., and Nadutkin, A.V., Siliciding of titanium carbides with gaseous SiO, Russ. J. Inorg. Chem., 2012, vol. 57, no. 8, pp. 1058–1063.https://doi.org/10.1134/S0036023612080062

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Khimiya Shared Research Facilities Center, Institute of Chemistry, Komi Scientific Center, Ural Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 19-08-00131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Istomina.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istomina, E.I., Istomin, P.V., Nadutkin, A.V. et al. Desilicidation of the Ti3SiC2 MAX Phase in a CO and SiO Atmosphere. Inorg Mater 56, 1217–1224 (2020). https://doi.org/10.1134/S0020168520120079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520120079

Keywords:

Navigation