Skip to main content
Log in

Synthesis of Molybdenum Nitrides

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the effect of precursors on the synthesis conditions and characteristics of molybdenum nitrides. Mo, MoO3, and MgMoO4 powders were nitrided in flowing ammonia at temperatures in the range 500–800°C. The use of molybdenum nanopowder as a precursor has made it possible to reduce the synthesis temperature and time. We have demonstrated the possibility of direct ammonolysis of the double oxide MgMoO4. Using this molybdate, we have obtained a material with a specific surface area up to 29 m2/g, which is a factor of 2 to 3 larger than that reached by nitriding MoO3. In all cases, the synthesis products consisted of the γ- and β-phases of Mo2N, with cubic and tetragonal lattices, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Toth, L., Transition Metal Carbides and Nitrides, New York: Academic, 1971.

    Google Scholar 

  2. Samsonov, G.V., Kulik, O.P., and Polishchuk, V.S., Poluchenie i metody analiza nitridov (Preparation and Analysis of Nitrides), Kiev: Naukova Dumka, 1978.

  3. Volpe, L. and Boudart, M., Ammonia synthesis on molybdenum nitride, J. Phys. Chem., 1986, vol. 90, no. 20, pp. 4874–4877.

    Article  CAS  Google Scholar 

  4. Abe, H., Cheung, T.K., and Bell, A.T., The activity of transition metal nitrides for hydrotreating quinoline and thiophene, Catal. Lett., 1993, vol. 21, nos. 1–2, pp. 11–18.

    Article  CAS  Google Scholar 

  5. Oyama, S.T., Preparation and catalytic properties of transition metal carbides and nitrides, Catal. Today, 1992, vol. 15, no. 2, pp. 179–200.

    Article  CAS  Google Scholar 

  6. Verkhoglyadova, T.S., Dubovik, T.V., and Samsonov, G.V., Nitridation of transition metal powders to nitride phases, Poroshk. Metall. (Kiev), 1961, no. 4, pp. 9–20.

  7. O’Loughlin, J.L., Wallace, C.H., Knox, M.S., and Kaner, R.B., Rapid solid-state synthesis of tantalum, chromium, and molybdenum nitrides, Inorg. Chem., 2001, vol. 40, no. 10, pp. 2240–2245.

    Article  Google Scholar 

  8. Maa, J. and Duc, Y., A convenient thermal reduction–nitridation route to nanocrystalline molybdenum nitride (Mo2N), J. Alloys Compd., 2008, vol. 463, nos. 1–2, pp. 196–199.

    Article  Google Scholar 

  9. Choi, D. and Kumta, P.N., Synthesis and characterization of nanostructured niobium and molybdenum nitrides by a two-step transition metal halide approach, J. Am. Ceram. Soc., 2011, vol. 94, no. 8, pp. 2371–2378.

    Article  CAS  Google Scholar 

  10. Choi, J.-G., Brenner, J.R., Colling, C.W., et al., Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts, Catal. Today, 1992, vol. 15, no. 2, pp. 201–222.

    Article  CAS  Google Scholar 

  11. Choi, J.-G., Curl, R.L., and Thompson, L.T., Molybdenum nitride catalysts. I. Influence of the synthesis factors on structural properties, J. Catal., 1994, vol. 146, no. 1, pp. 218–227.

    Article  CAS  Google Scholar 

  12. Mckaya, D., Hargreavesa, J.S.J., Ricob, J.L., et al., The influence of phase and morphology of molybdenum nitrides on ammonia synthesis activity and reduction characteristics, J. Solid State Chem., 2008, vol. 181, no. 2, pp. 325–333.

    Article  Google Scholar 

  13. Lee, K.-H., Lee, Y.-W., Ko, A.-R., et al., Single-crystalline mesoporous molybdenum nitride nanowires with improved electrochemical properties, J. Am. Ceram. Soc., 2013, vol. 96, no. 1, pp. 37–39.

    Article  CAS  Google Scholar 

  14. Orlov, V.M., Kuznetsov, V.Ya., and Osaulenko, R.N., Ammonolysis of magnesiothermic tantalum powders, Russ. J. Inorg. Chem., 2017, vol. 62, no. 1, pp. 33–38.https://doi.org/10.1134/S0036023617010132

    Article  CAS  Google Scholar 

  15. Orlov, V.M. and Osaulenko, R.N., Properties of nitrides prepared by the ammonolysis of magnesiothermic niobium powders, Inorg. Mater., 2018, vol. 54, no. 7, pp. 639–644.https://doi.org/10.1134/S0020168518070129

    Article  CAS  Google Scholar 

  16. Kolosov, V.N., Miroshnichenko, M.N., and Orlov, V.M., Influence of the composition of precursors and reduction conditions on the properties of magnesiothermic molybdenum powders, Inorg. Mater., 2017, vol. 53, no. 10, pp. 1058–1063.https://doi.org/10.1134/S0020168517100119

    Article  CAS  Google Scholar 

  17. Miroshnichenko, M.N., Kolosov, V.N., Makarova, T.I., and Orlov, V.M., Synthesis of calcium and magnesium molybdates and tungstates, Izv. SPbGTI (TU), 2017, no. 38 (64), pp. 44–47.

  18. Ganin, A.Yu., Kienle, L., and Vajenine, G.V., Synthesis and characterisation of hexagonal molybdenum nitrides, Solid State Chem., 2006, vol. 179, no. 8, pp. 2339–2348.

    Article  CAS  Google Scholar 

  19. Ettmayer, P., Das System Molibdän–Stickstoff, Monatsh. Chem., 1970, vol. 101, pp. 127–140.

    Article  CAS  Google Scholar 

  20. Sing, K.S.W., Everett, D.H., Haul, R.A.W., et al., Reporting physisorption data for gas/solid systems, Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Orlov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.M., Osaulenko, R.N. & Kuznetsov, V.Y. Synthesis of Molybdenum Nitrides. Inorg Mater 56, 1113–1121 (2020). https://doi.org/10.1134/S0020168520110102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520110102

Keywords:

Navigation