Skip to main content
Log in

Synthesis of Titanium Trichloride

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the preparation of titanium trichloride solutions by reducing aqueous titanium tetrachloride solutions with metallic aluminum. The results demonstrate that aqueous titanium tetrachloride solutions have higher reactivity with metallic aluminum than does pure titanium tetrachloride. The highest stability is offered by solutions prepared from aqueous 25 to 40% titanium tetrachloride solutions. We have examined how the temperature and time of the reduction of aqueous titanium tetrachloride solutions influence the titanium trichloride yield and assessed the feasibility of preparing aqueous titanium trichloride solutions using aluminum waste (incineration plant slag) as a raw material. In our experiments, we have obtained combined samples of titanium trichloride solutions that can be used as catalysts or reagents in water purification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Sovetskaya Entsiklopediya, 1995.

    Google Scholar 

  2. Kamnul Hasan, A.T.M., Fang, Y., Liu, B., and Terano, M., Surface analytical approach to TiCl3-based Ziegler–Natta catalysts combined with microstructure analysis of polymer, Polymer, 2010, vol. 51, no. 16, pp. 3627–3635. https://doi.org/10.1016/j.polymer.2010.05.053

    Article  CAS  Google Scholar 

  3. Costa, M.A.S., Silva, A.L.S.S., Coutinho, F.M.B., de Santa Maria, L.C., and Pereira, R.A., Highly active and stereospecific catalyst based on β-TiCl3 for propylene polymerization, Polymer, 1996, vol. 37, pp. 869–873. https://doi.org/10.1016/0032-3861(96)87267-3

    Article  CAS  Google Scholar 

  4. Xie, K., Xu, J., and Liu, P., Effect of ligands in TiCl3 (OAr) catalysts for ethylene polymerization: computational and experimental studies, Appl. Surf. Sci., 2018, no. 461, pp. 175–181. https://doi.org/10.1016/j.apsusc.2018.04.258

    Article  CAS  Google Scholar 

  5. Xia, S., Fu, Z., Huang, B., Xu, J., and Fan, Z., Ethylene/1-hexene copolymerization with MgCl2-supported Ziegler–Natta catalysts containing aryloxy ligands: Part I. Catalysts prepared by immobilizing TiCl3(OAr) onto MgCl2 in batch reaction, J. Mol. Catal. A: Chem., 2012, no. 355, pp. 161–167. https://doi.org/10.1016/j.molcata.2011.12.010

    Article  CAS  Google Scholar 

  6. Rahjan Chakraborty, R. and Ghosh, P., TiCl3 catalyzed one-pot protocol for the conversion of aldehydes into 5-substituted 1H-tetrazole, Tetrahedron Lett., 2018, vol. 59, no. 40, pp. 3616–3619. https://doi.org/10.1016/j.tetlet.2018.08.050

    Article  CAS  Google Scholar 

  7. Leal, J.H., Cantu, Y., Gonzalez, D.F., and Parsons, J.G., Brookite and anatase nanomaterial polymorphs of TiO2 synthesized from TiCl3, Inorg. Chem. Commun, 2017, vol. 84, pp. 28–32. https://doi.org/10.1016/j.inoche.2017.07.014

    Article  CAS  Google Scholar 

  8. Xue, B., Sun, T., Mao, F., Sun, L.-C., Yang, W., Xu, Z.-D., and Zhang, X., Facile synthesis of mesoporous core–shell TiO2 nanostructures from TiCl3, Mater. Res. Bull., 2013, vol. 46, no. 9, pp. 1524–1529. https://doi.org/10.1016/j.materresbull.2011.05.019

    Article  CAS  Google Scholar 

  9. Cassaignon, S., Koelsch, M., and Jolivet, J.-P., From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile): thermohydrolysis and oxidation in aqueous medium, J. Phys. Chem. Solids, 2007, vol. 68, nos. 5–6, pp. 695–700. https://doi.org/10.1016/j.jpcs.2007.02.020

    Article  CAS  Google Scholar 

  10. Hussain, S., Awad, J., Sarkar, B., Chow Christopher, W.K., Duan, J., and Leeuwen, J., Coagulation of dissolved organic matter in surface water by novel titanium(III) chloride: mechanistic surface chemical and spectroscopic characterization, Sep. Purif. Technol., 2019, vol. 213, pp. 213–223.

    Google Scholar 

  11. Kuzin, E.N., Chernyshev, P.I., Vizen, N.S., and Krutchinina, N.E., The purification of the galvanic industry wastewater of chromium(VI) compounds using titanium(III) chloride, Russ. J. Gen. Chem., 2018, vol. 88, no. 13, pp. 2954–2957.

    Article  CAS  Google Scholar 

  12. Luchinskii, G.P., Khimiya titana (The Chemistry of Titanium), Moscow: Khimiya, 1971.

  13. Coutinho, F.M.B., Costa, T.H.S., Santa Maria, L.C., and Pereira, R., Influence of the method of synthesis on the properties of TiCl3, Eur. Polym. J., 1992, vol. 28, no. 6, pp. 695–698. https://doi.org/10.1016/0014-3057(92)90045-4

    Article  CAS  Google Scholar 

  14. Auriemma, F., Busico, V., Corradini, P., and Trifuoggi, M., A reinvestigation of β-TiCl3: I. Preparation and structural characterization, Eur. Polym. J., 1992, vol. 28, no. 5, pp. 513–518. https://doi.org/10.1016/0014-3057(92)90126-m

    Article  CAS  Google Scholar 

  15. Goroshchenko, Ya.G., Khimiya titana (The Chemistry of Titanium), Kiev: Naukova Dumka, 1970.

  16. Lidin, R.A., Molochko, V.A., and Andreeva, L.L., Khimicheskie svoistva neorganicheskikh veshchestv (Chemical Properties of Inorganic Substances), Moscow: Khimiya, 2000, 3rd ed.

  17. Kuzin, E.N. and Krutchinina, N.E., Hydrolysis and chemical activity of aqueous TiCl4 solutions, Inorg. Mater., 2019, vol. 55, no. 8, pp. 885–889.

    Article  Google Scholar 

  18. Draginskii, V.L., Alekseeva, L.P., and Getmantsev, S.V., Koagulyatsiya v tekhnologii ochistki prirodnykh vod (Coagulation in Natural Water Purification Processes), Moscow: Nauchnoe Izd., 2005.

  19. Kuzin, E.N. and Krutchinina, N.E., Preparation of multicomponent coagulants based on mineral concentrates and application of them in water purification processes, Obogashchenie Rud, 2019, no. 3, pp. 43–48.

  20. Shon, H.K., Vigneswaran, S., Kim, I.S., Cho, J., Kim, G.J., Kim, J.B., and Kim, J.-H., Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater, Environ. Sci. Technol., 2007, vol. 41, no. 4, pp. 1372–1377. https://doi.org/10.1021/es062062g

    Article  CAS  PubMed  Google Scholar 

  21. Shon, H.K., Vigneswaran, S., Kandasamy, J., Zareie, M.H., Kim, J.B., Cho, D.L., and Kim, J.-H., Preparation and characterization of titanium dioxide (TiO2) from sludge produced by TiCl4 flocculation with FeCl3, Al2(SO4)3 and Ca(OH)2 coagulant aids in wastewater, Sep. Sci. Technol., 2009, vol. 44, no. 7, pp. 1525–1543. https://doi.org/10.1080/01496390902775810

    Article  CAS  Google Scholar 

  22. Zhao, Y.X., Gao, B.Y., Shon, H.K., Cao, B.C., and Kim, J.-H., Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts, J. Hazard. Mater., 2011, vol. 185, nos. 2–3, pp. 1536–1542. https://doi.org/10.1016/j.jhazmat.2010.10.084

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Mendeleev University of Chemical Technology through the Internal Bridging Grants for Young Science Educators Contest, proposal no. Z-2020-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Kuzin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzin, E.N., Krutchinina, N.E., Chernyshev, P.I. et al. Synthesis of Titanium Trichloride. Inorg Mater 56, 507–511 (2020). https://doi.org/10.1134/S002016852005009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852005009X

Keywords:

Navigation