Skip to main content
Log in

Sol–Gel Synthesis of a Zn-Doped Lithium Tantalate Growth Charge

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have developed a method for the synthesis of a zinc-doped lithium tantalate (LiTaO3) growth charge using high-purity tantalum-containing solutions, which is based on the heat treatment of lithium-, tantalum-, and zinc-containing citrate precursors. The thermolysis products have been characterized by thermal analysis, X-ray diffraction, and infrared absorption spectroscopy. We have optimized synthesis conditions and zinc concentration for obtaining a single-phase LiTaO3〈Zn〉 growth charge. Using the proposed process, we have obtained LiTaO3〈Zn〉 materials with tailored dopant concentrations, which can be used in both LiTaO3〈Zn〉 crystal growth and the preparation of doped lithium tantalate-based functional ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Oxford: Clarendon, 1977.

    Google Scholar 

  2. Kuz’minov, Yu.S., Niobat i tantalat litiya – materialy dlya nelineinoi optiki (Lithium Niobate and Lithium Tantalate: Nonlinear Optical Materials), Moscow: Nauka, 1975.

  3. Kuz’minov, Yu.S., Elektroopticheskii i nelineino-opticheskii kristall niobata litiya (Electro-Optic and Nonlinear Optical Lithium Niobate Crystals), Moscow: Nauka, 1987.

  4. Volk, T. and Wohleke, M., Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Berlin: Springer, 2008.

    Google Scholar 

  5. Yang, J., Mao, Q., Shang, J., Hao, H., Li, Q., Huang, C., Zhang, L., and Sun, J., Preparation and characterization of thick stoichiometric lithium tantalate crystals by vapor transport equilibration method, Mater. Lett., 2018, vol. 232, no. 1, pp. 150–152. https://doi.org/10.1016/j.matlet.2018.08.105

    Article  CAS  Google Scholar 

  6. Tang, F., Long, S., Yang, X., Yang, M., Quan, J., Lin, S., Ma, D., Zhu, Y., and Wang, B., Optimization of pyroelectric figures of merit via magnesia doping in lithium tantalate single crystal, J. Phys. D: Appl. Phys., 2018, vol. 51, no. 39, paper 395 101. https://doi.org/10.1088/1361-6463/aad88d

  7. Vyalikh, A., Zschornak, M., and Kohler, T., Analysis of the defect clusters in congruent lithium tantalite, Phys. Rev. Mater., 2018, vol. 2, no. 1, paper 013 804. https://doi.org/10.1103/PhysRevMaterials.2.013804

  8. Pryakhina, V.I., Greshnyakov, E.D., Lisjikh, B.I., Akhmatkhanov, A.R., Alikin, D.O., Shur, V.Ya., and Bartasyte, A., As-grown domain structure in lithium tantalate with spatially nonuniform composition, Ferroelectrics, 2018, vol. 525, no. 1, pp. 47–53. https://doi.org/10.1080/00150193.2018.1432926

    Article  CAS  Google Scholar 

  9. Buzady, A., Unferdorben, M., and Toth, G., Refractive index and absorption coefficient of undoped and Mg-doped lithium tantalate in the terahertz range, J. Infrared, Millimeter Terahertz Waves, 2017, vol. 38, no. 8, pp. 963–971. https://doi.org/10.1007/s10762-017-0393-y

    Article  CAS  Google Scholar 

  10. Lee, K.-S., Ko, D.-K., and Yu, N.E., Temperature-dependent Sellmeier equation at terahertz frequency range for 1 mol. % MgO-doped stoichiometric lithium tantalate, Jpn. J. Appl. Phys., 2017, vol. 56, no. 4, paper 040 303. https://doi.org/10.7567/JJAP.56.040303

  11. Gorelik, V., Sidorov, N., and Vodchits, A., Optical properties of lithium niobate and lithium tantalate crystals with impurities and defects, Phys. Wave Phenom., 2017, vol. 25, no. 1, pp. 10–19. https://doi.org/10.3103/S1541308X17010022

    Article  Google Scholar 

  12. Xiaoling, Z., Ming, Y., and Menqxue, L., Comparison of broadband second-harmonic generation in periodically poled stoichiometric lithium tantalate with different magnesium oxide doping concentrations, J. Optoelectron. Adv. Mater., 2016, vol. 18, nos. 7–8, pp. 613–617.

    Google Scholar 

  13. Ichioka, H., Furuya, S., Asaka, T., Nakano, H., and Fukuda, K., Crystal structures and enhancement of photoluminescence intensities by effective doping for lithium tantalate phosphors, Powder Diffr., 2015, vol. 30, no. 4, pp. 326–332. https://doi.org/10.1017/S0885715615000688

    Article  CAS  Google Scholar 

  14. Okatov, M.A., Spravochnik tekhnologa-optika (Optics Technologist’s Handbook), St. Petersburg: Politekhnika, 2004.

  15. Masloboeva, S.M., Palatnikov, M.N., Arutyunyan, L.G., and Ivanenko, D.V., Methods for the preparation of a doped lithium niobate growth charge, Izv. SPbGTI(TU), 2017, no. 38 (64), pp. 34–43.

  16. Masloboeva, S.M., Sidorov, N.V., Palatnikov, M.N., Arutyunyan, L.G., and Chufyrev, P.G., Niobium(V) oxide doped with Mg2+ and Gd3+ cations: synthesis and structural studies, Russ. J. Inorg. Chem., 2011, vol. 56, no. 8, pp. 1194–1198. https://doi.org/10.1134/S0036023611080183

    Article  CAS  Google Scholar 

  17. Palatnikov, M.N., Biryukova, I.V., Masloboeva, S.M., Makarova, O.V., Kravchenko, O.E., Yanichev, A.A., and Sidorov, N.V., Structure and optical homogeneity of LiNbO3〈Mg〉 crystals grown from different charges, Inorg. Mater., 2013, vol. 49, no. 7, pp. 715–720. https://doi.org/10.1134/S0020168513060083

    Article  CAS  Google Scholar 

  18. Masloboeva, S.M., Elizarova, I.R., Kadyrova, G.I., and Arutyunyan, L.G., Synthesis and properties of homogeneously doped Nb2O5〈Dy〉 and a LiNbO3〈Dy〉 growth charge, Inorg. Mater., 2014, vol. 50, no. 8, pp. 867–873. https://doi.org/10.1134/S0020168514080135

    Article  CAS  Google Scholar 

  19. Masloboeva, S.M., Arutyunyan, L.G., and Palatnikov, M.N., New approach to the preparation of doped lithium niobate batches for single crystal growth, Russ. J. Inorg. Chem., 2018, vol. 63, no. 4, pp. 449–454. https://doi.org/10.1134/S0036023618040137

    Article  CAS  Google Scholar 

  20. Palatnikov, M.N., Sidorov, N.V., and Kalinnikov, V.T., Segnetoelektricheskie tverdye rastvory na osnove oksidnykh soedinenii niobiya i tantala: sintez, issledovanie strukturnogo uporyadocheniya i fizicheskikh kharakteristik (Ferroelectric Solid Solutions Based on Niobium and Tantalum Oxide Compounds: Synthesis, Structural Order, and Physical Characteristics), St. Petersburg: Nauka, 2002, 2nd ed.

  21. Masloboeva, S.M., Elizarova, I.R., Arutyunyan, L.G., and Kalinnikov, V.T., Synthesis and study of a lithium tantalate charge doped with rare-earth elements, Dokl. Phys. Chem., 2015, vol. 460, no. 4, pp. 427–431. https://doi.org/10.1134/S0012501615020037

    Article  CAS  Google Scholar 

  22. Masloboeva, S.M., Duboshin, G.N., and Arutyunyan, L.G., Preparation of potassium heptafluorotantalate from fluoride–sulfate solutions, Vestn. MGTU, 2009, vol. 12, no. 2, pp. 279–285.

    Google Scholar 

  23. Farbun, I.A., Romanova, I.V., Terikovskaya, T.E., Dzanashvili, D.I., and Kirillov, S.A., Complex formation in the course of synthesis of zinc oxide from citrate solutions, Russ. J. Appl. Chem., 2007, vol. 80, no. 11, pp. 1773–1778.

    Article  Google Scholar 

  24. Werde, K.V., Mondelaers, D., Vanhoyland, G., Nelis, D., Van Bael, M.K., and Mullens, J., Thermal decomposition of the ammonium zinc acetate citrate precursor for aqueous chemical solution depositions of ZnO, J. Mater. Sci., 2002, vol. 37, no. 1, pp. 81–88.

    Article  Google Scholar 

  25. Kharitonov, Yu.Ya. and Alikhanova, Z.M., Infrared absorption spectra of some uranyl complexes with oxy acid residues, Radiokhimiya, 1964, vol. 6, no. 6, pp. 702–713.

    CAS  Google Scholar 

  26. Nyquist, R.A., Infrared Spectra of Inorganic Compounds, New York: Academic, 1971.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Masloboeva.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masloboeva, S.M., Palatnikov, M.N. & Arutyunyan, L.G. Sol–Gel Synthesis of a Zn-Doped Lithium Tantalate Growth Charge. Inorg Mater 56, 270–276 (2020). https://doi.org/10.1134/S0020168520030127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520030127

Keywords:

Navigation