Skip to main content
Log in

Compatibility of LiCoPO4 Cathode Material with Li1.5Al0.5Ge1.5(PO4)3 Lithium-Ion-Conducting Solid Electrolyte

  • Published:
Inorganic Materials Aims and scope

Abstract—

The stability of the LiCoPO4 electrode material in contact with a NASICON-type lithium ion conducting solid electrolyte having the composition Li1.5Al0.5Ge1.5(PO4)3 (LAGP) and a wide range of electrochemical stability has been studied for the first time. We have found the optimal temperature at which there is no reaction between the starting components of the composites and they retain their chemical and thermal stability. Cosintering a mechanical mixture of synthesized single-phase LiCoPO4 and LAGP powders with a submicron particle size at 750°C, we have obtained a stable LiCoPO4/LAGP two-phase composite whose room-temperature electrical conductivity is three orders of magnitude higher than that of the lithium cobalt double phosphate. Composites based on LiCoPO4 and the LAGP ionic conductor can be regarded as promising cathode materials for all-solid-state lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kulova, T.L. and Skundin, A.M., High-voltage materials for positive electrodes of lithium ion batteries (review), Russ. J. Electrochem., 2016, vol. 52, no. 6, pp. 501–524.

    Article  Google Scholar 

  2. Prabu, M., Selvasekarapandian, S., Kulkarni, A.R., et al., Ionic transport properties of LiCoPO4 cathode material, Solid State Sci., 2011, vol. 13, pp. 1714–1718.

    Article  CAS  Google Scholar 

  3. Harada, R., Aso, K., Hayashi, A., and Tatsumisago, M., Preparation of composites with LiCoPO4 electrode and LiTi2(PO4)3 electrolyte for bulk-type all-solid-state lithium batteries, Electrochemistry, 2015, vol. 83, no. 10, pp. 898–901.

    Article  CAS  Google Scholar 

  4. Allen, J.L., Thompson, T., Sakamoto, J., et al., Transport properties of LiCoPO4 and Fe-substituted LiCoPO4, J. Power Sources, 2014, vol. 254, pp. 204–208.

    Article  CAS  Google Scholar 

  5. Svitan’ko, A., Scopets, V., Novikova, S., and Yaroslavtsev, A., The effect of composite formation with oxides on the ion conductivity of NASICON-type LiTi2(PO4)3 and olivine-type LiFePO4, Solid State Ionics, 2015, vol. 271, pp. 42–47.

    Article  Google Scholar 

  6. Svitan’ko, A.I., Novikova, S.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., An improvement in the ionic conductivity and electrochemical characteristics of LiFePO4 by heterogeneous doping with NASICON-type phosphate, Mendeleev Commun., 2015, vol. 25, pp. 207–208.

    Article  Google Scholar 

  7. Ren, Y., Chen, K., Chen, R., et al., Oxide electrolytes for lithium batteries, J. Am. Ceram. Soc., 2015, vol. 98, pp. 3603–3623.

    Article  CAS  Google Scholar 

  8. Jian, Z., Hu, Y.-S., Ji, X., and Chen, W., NASICON-structured materials for energy storage, Adv. Mater., 2017, vol. 29, no. 20, paper 1 601 925.

    Article  Google Scholar 

  9. Deiner, L.J., Howell, T.G., Koenig, G.M., and Rottmayer, M.A., Interfacial reaction during co-sintering of lithium manganese nickel oxide and lithium aluminum germanium phosphate, Int. J. Appl. Ceram. Technol., 2019, vol. 16, pp. 1659–1667.

    Article  CAS  Google Scholar 

  10. Nagata, K. and Nanno, T., All solid battery with phosphate compounds made through sintering process, J. Power Sources, 2007, vol. 174, pp. 832–837.

    Article  CAS  Google Scholar 

  11. Gellert, M., Dashjav, E., Grüner, D., et al., Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate, Ionics, 2018, vol. 24, no. 4, pp. 1001–1006. https://doi.org/10.1007/s11581-017-2276-6

    Article  CAS  Google Scholar 

  12. Yu, S., Mertens, A., Tempel, H., Schierholz, R., Kungl, H., and Eichel, R.-A., Monolithic all-phosphate solid-state lithium-ion battery with improved interfacial compatibility, ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 22 264–22 277.

    Article  CAS  Google Scholar 

  13. Okumura, T., Takeuchi, T., and Kobayashi, H., Application of LiCoPO4 positive electrode material in all-solid-state lithium-ion battery, Electrochemistry, 2014, vol. 82, no. 10, pp. 906–908.

    Article  CAS  Google Scholar 

  14. Kunshina, G.B., Ivanenko, V.I., Gromov, O.G., and Lokshin, E.P., Production of an electrode material modified by a lithium-conducting solid electrolyte, Russ. J. Inorg. Chem., 2014, vol. 59, no. 10, pp. 1175–1179.

    Article  CAS  Google Scholar 

  15. Feng, J.K., Lu, L., and Lai, M.O., Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3, J. Alloys Compd., 2010, vol. 501, pp. 255–258.

    Article  CAS  Google Scholar 

  16. Liu, Y., Chen, J., and Gao, J., Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte, Solid State Ionics, 2018, vol. 318, pp. 27–34.

    Article  CAS  Google Scholar 

  17. Delaizir, G., Viallet, V., Aboulaich, A., et al., The stone age revisited: building a monolithic inorganic lithium-ion battery, Adv. Funct. Mater., 2012, vol. 22, pp. 2140–2147.

    Article  CAS  Google Scholar 

  18. Aboulaich, A., Bouchet, R., Delaizir, G., et al., A new approach to develop safe all-inorganic monolithic Li-ion batteries, Adv. Energy Mater., 2011, vol. 1, pp. 179–183.

    Article  CAS  Google Scholar 

  19. Kubanska, A., Castro, L., Tortet, L., et al., Effect of composite electrode thickness on the electrochemical performances of all-solid-state Li-ion batteries, J. Electroceram., 2017, vol. 38, nos. 2–4, pp. 189–196.

    Article  CAS  Google Scholar 

  20. Robinson, J.P., Kichambare, P.D., Deiner, J.L., et al., High temperature electrode–electrolyte interface formation between LiMn1.5Ni0.5O4 and Li1.4Al0.4Ge1.6(PO4)3, J. Am. Ceram. Soc., 2018, vol. 101, no. 3, pp. 1087–1094.

    Article  CAS  Google Scholar 

  21. Kunshina, G.B., Bocharova, I.V., and Lokshin, E.P., Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte, Inorg. Mater., 2016, vol. 52, no. 3, pp. 279–284.

    Article  CAS  Google Scholar 

  22. Kunshina, G.B., Bocharova, I.V., and Ivanenko, V.I., Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 2, pp. 238–244.

    Article  Google Scholar 

  23. Tananaev, I.V. and Avduevskaya, K.A., Phase relations in the GeO2–H2C2O4–H2O system at 25°C, Zh. Neorg. Khim., 1958, vol. 3, no. 9, pp. 2172–2177.

    CAS  Google Scholar 

  24. Ivanenko, V.I., Aksenova, S.V., Lokshin, E.P., et al., Synthesis of phase-pure transition metal double phosphate nanopowders, Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, 2015, no. 31, pp. 354–358.

  25. Gnedenkov, S.V. and Sinebryukhov, S.L., Impedance spectroscopy in studies of charge transport processes, Vestn. Dal’nevostochn. Otd. Ross. Akad. Nauk, 2006, no. 5, pp. 6–16.

  26. Rissouli, K., Benkhouja, K., Ramos-Barrado, J.R., and Julien, C., Electrical conductivity in lithium orthophosphates, Mater. Sci. Eng., B, 2003, vol. 98, no. 3, pp. 185–189.

    Article  Google Scholar 

Download references

Funding

This research was supported in part by the Presidium of the Russian Academy of Sciences, program no. 22: Promising Physicochemical Technologies for Specialty Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Kunshina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunshina, G.B., Bocharova, I.V. & Ivanenko, V.I. Compatibility of LiCoPO4 Cathode Material with Li1.5Al0.5Ge1.5(PO4)3 Lithium-Ion-Conducting Solid Electrolyte. Inorg Mater 56, 204–210 (2020). https://doi.org/10.1134/S0020168520020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520020089

Keywords:

Navigation