Skip to main content
Log in

Synthesis of a Composite Material Based on a Mixture of Calcium Phosphates and Sodium Alginate

  • Published:
Inorganic Materials Aims and scope

Abstract

We have prepared a composite material based on a mixture of calcium phosphates and sodium alginate and investigated their composition, morphology, and dynamic dissolution behavior. The addition of a powder material to the sodium alginate matrix causes no changes in its composition, but increases the specific surface area and resorption rate of the sample. We have optimized the synthesis conditions of the composite material: the filler/matrix ratio and the drying temperature and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kundu, J., Pati, F., Shim, J.H., and Cho, D.W., Rapid Prototyping Technology for Bone Regeneration. Principles and Applications, Cambridge: Woodhead, 2014, pp. 254–284.

    Google Scholar 

  2. Popov, V.K., Komlev, V.S., and Chichkov, B.N., Calcium phosphate blossom for bone tissue engineering, Mater. Today, 2014, vol. 2, pp. 96–97.

    Article  Google Scholar 

  3. Angelov, A.I., Levin, B.V., and Chernenko, Y.D., Phosphate Ore, Moscow, 2000, p. 120.

    Google Scholar 

  4. Wopenka, B. and Pasteris, J.D., A mineralogical perspective on the apatite in bone, Mater. Sci. Eng., 2005, vol. 25, no. 2, pp. 131–143.

    Article  Google Scholar 

  5. Dorozhkin, S.V., Calcium orthophosphates, J. Mater. Sci., 2007, vol. 42, pp. 1061–1095.

    Article  CAS  Google Scholar 

  6. Venkatesan, J. and Kim, Se.K., Marine biomaterials, in Springer Handbook of Marine Biotechnology, Berlin: Springer, 2015, pp. 3–19.

    Google Scholar 

  7. Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., The chemistry of calcium phosphate-based inorganic biomaterials, Ross. Khim. Zh., 2004, vol. 48, no. 4, pp. 32–46.

    Google Scholar 

  8. Musskaya, O.N., Lesnikovich, Yu.A., Kazbanov, V.V., and Zhitkova, N.S., Preparation of bioactive mesoporous calcium phosphate granules, Inorg. Mater., 2018, vol. 54, no. 2, pp. 117–124.

    Article  CAS  Google Scholar 

  9. Chaikina, M.V., Mekhanokhimiya prirodnykh i sinteticheskikh apatitov (Mechanochemistry of Natural and Synthetic Apatites), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2002, p. 223.

  10. Zakharov, N.A., Demina, L.I., Aliev, A.D., et al., Synthesis and properties of calcium hydroxyapatite/silk fibroin organomineral composites, Inorg. Mater., 2017, vol. 53, no. 3, pp. 333–342.

    Article  CAS  Google Scholar 

  11. Safronova, T.V., Putlyaev, V.I., Shekhirev, M.A., and Kuznetsov, A.V., Composite ceramics containing a bioresorbable phase, Steklo Keram., 2007, no. 3, pp. 31–35.

  12. Gromov, A.V., A new generation of osteoplastic materials, in Farmatsevticheskie i meditsinskie biotekhnologii: Sbornik tezisov nauchno-prakticheskoi konferentsii (Pharmaceutical and Medical Biotechnologies: Scientific–Practical Conf.), Moscow, 2012, p. 226.

  13. Komlev, V.S., Barinov, S.M., Bozo, I.I., Deev, R.V., Eremin, I.I., Fedotov, A.Y., et al., Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 19, pp. 16 610–16 620.

  14. Gurin, A.N., Fedotov, A.Yu., Deev, R.V., and Komlev, V.S., Targeted bone tissue regeneration using a barrier membrane based on sodium alginate and octacalcium phosphate, Kletochnaya Transplantol. Tkanevaya Inzh., 2013, vol. 8, no. 4, pp. 8–12.

    Google Scholar 

  15. Karalkin, P.A., Sergeeva, N.S., Komlev, V.S., et al., Biocompatibility and osteoplastic properties of mineral–polymer composite materials based on sodium alginate sodium alginate, gelatin, and calcium phosphates intended for 3D printing of bone substitute constructs, Geny Kletki, 2016, vol. 11, no. 3, pp. 94–101.

    Google Scholar 

  16. Sergeeva, N.S., Komlev, V.S., Sviridova, I.K., et al., Evaluation of alginate–calcium phosphate composite materials intended for use in prototyping technologies for in vitro bone defect substitution, Vestn. Travmatol. Ortopedii im. N. N. Priorova, 2015, no. 1, pp. 28–34.

  17. Gurin, A.N., Komlev, B.C., Fedotov, A.Yu., Berkovskii, A.A., Mamonov, V.E., and Erieor’yan, A.S., Comparative characterization of chitosan-, alginate-, and fibrin-based materials in combination with p-tricalcium phosphate for osteoplasty (experimental morphological investigation), Stomatologiya, 2014, vol. 93, pp. 4–10.

    Article  CAS  Google Scholar 

  18. Tung, M.S., Tomazic, B., and Brown, W.E., The effects of magnesium and fluoride on the hydrolysis of octacalcium phosphate, Arch. Oral Biol., 1992, pp. 585–591.

  19. Dorozhkin, S.V., Bioceramics of calcium orthophosphates, Biomaterials, 2010, vol. 31, pp. 1465–1485.

    Article  CAS  Google Scholar 

  20. Yusova, A.A., Gusev, I.V., and Lipatova, I.M., Properties of hydrogels based on mixtures of sodium alginate with other polysaccharides of natural origin, Khim. Rastit. Syr’ya, 2014, no. 4, pp. 59–66.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tsyganova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganova, A.A., Golovanova, O.A. Synthesis of a Composite Material Based on a Mixture of Calcium Phosphates and Sodium Alginate. Inorg Mater 55, 1156–1161 (2019). https://doi.org/10.1134/S0020168519110141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519110141

Keywords:

Navigation