Skip to main content
Log in

Synthesis, Properties, and Thermal Transformation of Organomagnesiumoxaneyttroxanealumoxanes

  • Published:
Inorganic Materials Aims and scope

Abstract—This paper presents a study of organomagnesiumoxaneyttroxanealumoxane oligomers soluble in organic solvents and exhibiting fiber-forming properties. We describe processes underlying the formation of modified alumina structures as a result of the thermal transformation of organoelement precursors into ceramic phases. The physicochemical properties of the organomagnesiumoxaneyttroxanealumoxanes and ceramic samples prepared from them have been studied by nuclear magnetic resonance, IR spectroscopy, scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and elemental analysis. Polymer fibers have been produced by melt-spinning the fiber-forming organomagnesiumoxaneyttroxanealumoxanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Advanced Ceramics. US Industry Study with Forecasts for 2015 & 2020, Cleveland: The Freedonia Group, 2011.

  2. Chawla, K.K., Composite Materials: Science and Engineering, New York: Springer, 2012. https://doi.org/10.1007/978-0-387-74365-3

  3. Liu, Hu., Liu, Ha., Huang, Ch., Zou, B., and Chai, Ya., Effects of MgO and Y2O3 on the microstructure and mechanical properties of Al2O3 ceramics, Key Eng. Mater., 2014, vol. 589–590, pp. 572–577. https://doi.org/10.4028/www.scientific.net/KEM.589-590.572

    Article  CAS  Google Scholar 

  4. Abakumov, G.A. et al., Organoelement chemistry: promising areas of growth and challenges, Usp. Khim., 2018, vol. 87, no. 5, pp. 393–507.

    Article  CAS  Google Scholar 

  5. Shcherbakova, G.I., Storozhenko, P.A., Apukhtina, T.L., Varfolomeev, M.S., Zhigalov, D.V., Blokhina, M.Kh., Korolev, A.P., Kutinova, N.B., and Riumina, A.A., Components of ceramic composite materials based on organoelement oligomers, J. Phys: Conf. Ser., 2018, paper 1134. https://doi.org/10.1088/1742-6596/1134/1/012054

  6. Abalı, S., Effect of growth rate on the microstructure and mechanical behavior of directionally solidified Y3Al5O12/MgAl2O4 eutectics, J. Cryst. Growth, 2014, vol. 391, pp. 18–24. https://doi.org/10.1016/j.jcrysgro.2013.12.050

    Article  CAS  Google Scholar 

  7. Okabe, T., Nishikawa, M., Takeda, N., and Sekine, H., Effect of matrix hardening on the tensile strength of alumina fiber-reinforced aluminum matrix composites, Key Eng. Mater., 2010, vol. 430, pp. 83–99. https://doi.org/10.4028/www.scientific.net/KEM.430.83

    Article  CAS  Google Scholar 

  8. Riehemann, W., Trojanova, Z., and Mielczarek, A., Fatigue in magnesium alloy AZ91–γalumina fiber composite studied by internal friction measurements, Proc. Eng., 2010, vol. 2, no. 21, pp. 2151–2160. https://doi.org/10.1016/j.proeng.2010.03.231

    Article  Google Scholar 

  9. Naskar, M.K., Basu, K., and Chatterjee, M., Sol–gel approach to near-net-shape oxide-oxide composites reinforced with short alumina fibres – the effect of crystallization, Ceram. Int., 2009, vol. 35, no. 8, pp. 3073–3079. https://doi.org/10.1016/j.ceramint.2009.04.013

    Article  CAS  Google Scholar 

  10. Kumar, A., Nanofibers, Intech, 2010, pp. 405–418. https://doi.org/10.5772/8165

  11. Kim, J.-H., Yoo, S.-J., Kwak, D.-H., Jung, H.-J., Kim, T.-Y., Park, K.-H., and Lee, J.-W., Characterization and application of electrospun alumina nanofibers, Nanoscale Res. Lett., 2014, vol. 9, paper 44. https://doi.org/10.1186/1556-276X-9-44

  12. Wilson, D.M., New High Temperature Oxide Fibers, in High Temperature Ceramic Matrix Composites, New York: Wiley, 2001, pp. 1–12. https://doi.org/10.1002/3527605622.ch1

  13. Wang, J.Q., Wang, Y.Z., Qiao, M.H., Xie, S.H., and Fan, K.N., A novel sol–gel synthetic route to alumina nanofibers via aluminum nitrate and hexamethylenetetramine, Mater. Lett., 2007, vol. 61, no. 28, pp. 5074–5077. https://doi.org/10.1016/j.matlet.2004.07.068

    Article  CAS  Google Scholar 

  14. Shojaie-Bahaabad, M., Taheri-Nassaj, E., and Naghizadeh, R., An alumina–YAG nanostructured fiber prepared from an aqueous sol–gel precursor: preparation, rheological behavior and spinnability, Ceram. Int., 2008, vol. 34, no. 8, pp. 1893–1902. https://doi.org/10.1016/j.ceramint.2007.07.032

    Article  CAS  Google Scholar 

  15. Tan, H.-B. and Guo, C.-S., Preparation of long alumina fibers by sol–gel method using malic acid, Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1563–1567. https://doi.org/10.1016/S1003-6326(11)60897-2

    Article  CAS  Google Scholar 

  16. Teoh, G.L., Liew, K.Y., and Mahmood, W.A.K., Synthesis and characterization of sol–gel alumina nanofibers, J. Sol–Gel Sci. Technol., 2007, vol. 44, pp. 177–186. https://doi.org/10.1007/s10971-007-1631-x

    Article  CAS  Google Scholar 

  17. Yang, X., Shao, C., and Liu, Y., Fabrication of Cr2O3/Al2O3 composite nanofibers by electrospinning, J. Mater. Sci., 2007, vol. 42, pp. 8470–8472. https://doi.org/10.1007/s10853-007-1769-5

    Article  CAS  Google Scholar 

  18. Panda, P.K. and Ramakrishna, S., Electrospinning of alumina nanofibers using different precursors, J. Mater. Sci., 2007, vol. 42, pp. 2189–2193. https://doi.org/10.1007/s10853-007-1581-2

    Article  CAS  Google Scholar 

  19. Maneeratana, V. and Sigmund, W.M., Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide based precursor, Chem. Eng. J., 2008, vol. 137, pp. 137–143. https://doi.org/10.1016/j.cej.2007.09.013

    Article  CAS  Google Scholar 

  20. Kang, W., Cheng, B., Li, Q., Zhuang, X., and Ren, Y., A new method for preparing alumina nanofibers by electrospinning technology, Textile Res. J., 2011, vol. 81, no. 2, pp. 148–155. https://doi.org/10.1177/0040517510377831

    Article  CAS  Google Scholar 

  21. Mahapatra, A., Mishra, B.G., and Hota, G., Synthesis of ultra-fine α-Al2O3 fibers via electrospinning method, Ceram. Int., 2011, vol. 37, pp. 2329–2333. https://doi.org/10.1016/j.ceramint.2011.03.028

    Article  CAS  Google Scholar 

  22. Xu, B., Sun, H., Zhang, Q., and Du, Y., Preparation and characterization of alumina nanofibers by gas-solid reaction method, Adv. Mater. Res., 2012, vol. 412, pp. 215–218. https://doi.org/10.4028/www.scientific.net/AMR.412.215

    Article  CAS  Google Scholar 

  23. Pfeifer, S., Demirci, P., Duran, R., Stolpmann, H., Renfftlen, A., Nemrava, S., and Niewa, R., Clauß, B., and Buchmeiser, M.R., Synthesis of zirconia toughened alumina (ZTA) fibers for high performance materials, J. Eur. Ceram. Soc., 2016, vol. 36, pp. 725–731. https://doi.org/10.1016/j.jeurceramsoc.2015.10.028

    Article  CAS  Google Scholar 

  24. Tan, H., Ma, X., Lu, J., and Li, K., Preparation of yttrium aluminum garnet fibers by the sol–gel method, Ceram. Silik., 2012, vol. 56, no. 3, pp. 187–190.

    CAS  Google Scholar 

  25. Ma, X., Wang, C., Tan, H., Nan, J., and Lv, Z., Preparation and crystal activation energy of long yttrium aluminum garnet gel fibers, J. Sol–Gel Sci. Technol., 2016, vol. 80, pp. 226–232. https://doi.org/10.1007/s10971-016-4063-7

    Article  CAS  Google Scholar 

  26. Kimura, Y., Nishimura, A., Shimooka, T., and Taniguchi, I., Poly(acyloxyaloxane) as organometallic precursor for alumina. Synthesis of poly(propionyloxyaloxane) from an alkoxyaluminium compound, Macromol. Chem., Rapid Commun., 1985, vol. 6, pp. 247–253. https://doi.org/10.1002/marc.1985.030060406

    Article  CAS  Google Scholar 

  27. Kimura, Y., Sugaya, S., Ichimura, T., and Taniguchi, I., Synthesis of poly[(acyloxy)aloxane] with carboxyl ligand and its utilization for the processing of alumina fiber, Macromolecules, 1987, vol. 20, no. 10, pp. 2329–2334. https://doi.org/10.1021/ma00176a001

    Article  CAS  Google Scholar 

  28. Kimura, Y., Fuurukawa, M., Yamane, H., and Kitao, T., Novel melt-processable poly[(acyloxy)aloxane] as alumina precursor, Macromolecules, 1989, vol. 22, pp. 79–85. https://doi.org/10.1021/ma00191a016

    Article  CAS  Google Scholar 

  29. Shcherbakova, G.I., Krivtsova, N.S., Kutinova, N.B., Apukhtina, T.L., Varfolomeev, M.S., Drachev, A.I., and Storozhenko, P.A., RF Patent 2 664 950, 2018.

  30. Storozhenko, P.A., Shcherbakova, G.I., Tsirlin, A.M., Murkina, A.S., Varfolomeev, M.S., Kuznetsova, M.G., Polyakova, M.V., and Trokhachenkova, O.P., Chelated alkoxyalumoxanes and a silica-free binder based on them, Inorg. Mater., 2007, vol. 43, no. 3, pp. 320–328.

    Article  CAS  Google Scholar 

  31. Shcherbakova, G.I., Storozhenko, P.A., Kutinova, N.B., Sidorov, D.V., Varfolomeev, M.S., Kuznetsova, M.G., Polyakova, M.V., Chernyshev, A.E., Drachev, A.I., and Yurkov, G.Yu., Synthesis of yttrium-containing organoalumoxanes, Inorg. Mater., 2012, vol. 48, no. 10, pp. 1058–1063.

    Article  CAS  Google Scholar 

  32. Shcherbakova, G.I., Apukhtina, T.L., Krivtsova, N.S., Varfolomeev, M.S., Sidorov, D.V., and Storozhenko, P.A., Fiber-forming organoyttroxanealumoxanes, Inorg. Mater., 2015, vol. 51, no. 3, pp. 206–214. https://doi.org/10.1134/S0020168515030140

    Article  CAS  Google Scholar 

  33. Shcherbakova, G.I., Storozhenko, P.A., Apukhtina, T.L., Varfolomeev, M.S., Kuznetsova, M.G., Drachev, A.I., and Ashmarin, A.A., Preceramic organomagnesiumoxanealumoxanes: synthesis, properties and pyrolysis, Polyhedron, 2017, vol. 135, pp. 144–152. https://doi.org/10.1016/j.poly.2017.07.006

    Article  CAS  Google Scholar 

  34. Shcherbakova, G.I., Storozhenko, P.A., Krivtsova, N.S., Kutinova, N.B., Apukhtina, T.L., Varfolomeev, M.S., Kuznetsova, M.G., Drachev, A.I., Stolyarova, I.V., and Ashmarin, A.A., Synthesis of preceramic organomagnesiumoxanealumoxanes, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1209–1216. https://doi.org/10.1134/S0020168517110103

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 17-03-00331 A) and the Russian Federation President’s Grants Council (grant no. MK-39.2019.3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. I. Shcherbakova or A. A. Ashmarin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakova, G.I., Storozhenko, P.A., Novokovskaya, E.A. et al. Synthesis, Properties, and Thermal Transformation of Organomagnesiumoxaneyttroxanealumoxanes. Inorg Mater 55, 1068–1078 (2019). https://doi.org/10.1134/S0020168519100133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519100133

Keywords:

Navigation