Skip to main content
Log in

Heat Capacity of the R2Ge2O7 (R = Pr–Lu, Y) Rare-Earth Germanates

  • Published:
Inorganic Materials Aims and scope

Abstract—

The R2Ge2O7 (R = Pr–Lu, Y) rare-earth germanates have been prepared by solid-state reactions by firing stoichiometric R2O3 + GeO2 mixtures in air at temperatures in the range 1273–1473 K. The unit-cell parameters (a, c, and V) of the R2Ge2O7 (R = Tb–Lu) compounds have been shown to be linear functions of the ionic radius of the rare-earth elements. The high-temperature heat capacity of polycrystalline samples of the germanates has been determined by differential scanning calorimetry in the temperature range 350–1000 K. The variation in the specific heat of R2Ge2O7 has been shown to be correlated with the dependence of the heat capacity of rare-earth oxides on the ionic radius of the rare-earth element within each tetrad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Dem’yanets, L.N., Lobachev, A.N., and Emel’chenko, G.A., Germanaty redkozemel’nykh elementov (Rare-Earth Germanates), Moscow: Nauka, 1980.

  2. Bondar’, I.A., Vinogradova, V.N., Dem’yanets, L.N., et al., Soedineniya redkozemel’nykh elementov. Silikaty, germanaty, fosfaty, arsenaty, vanadaty (Rare-Earth Compounds: Silicates, Germanates, Phosphates, Arsenates, and Vanadates), Moscow: Nauka, 1983.

  3. Portnoi, K.I. and Timofeeva, N.I., Kislorodnye soedineniya redkozemel’nykh elementov (Rare-Earth Oxide Compounds), Moscow: Metallurgiya, 1986.

  4. Kozlov, V.D., Magunov, R.L., Kovalevskaya, I.P., et al., Preparation of neodymium, samarium, and europium germanates, Ukr. Khim. Zh (Russ. Ed.), 1973, vol. 39, pp. 658–662.

  5. Ding, L., Zhang, Q., Liu, W., et al., Preparation and luminescence properties of Yb3+ activated Gd2GeO5, J. Alloys Compd., 2013, vol. 557, pp. 261–264.

    Article  CAS  Google Scholar 

  6. Brixner, L., Galabrese, J., and Chen, H.Y., Structure and luminescence of Gd2GeO5 and Dy2GeO5, J. Less-Common Met., 1985, vol. 110, pp. 397–410.

    Article  CAS  Google Scholar 

  7. Chattopadhyay, K.N., Mondal, S., and Chakrabarti, P.K., Measurements of magnetic susceptibilities, their anisotropies and crystal field investigations of monoclinic single crystals of Ho2GeO5, J. Magn. Magn. Mater., 2008, vol. 320, pp. 3288–3292.

    Article  CAS  Google Scholar 

  8. Tyagi, A., Shah, A., Sudarsan, V., et al., Difference in the luminescence properties of orthorhombic and monoclinic forms of Y2GeO5:Ln (Ln = Tb3+ and Dy3+), Mater. Res. Bull., 2015, vol. 64, pp. 182–186.

    Article  CAS  Google Scholar 

  9. Becker, U.W. and Felsche, J., Phases and structural relations of the rare earth germanates RE2GeO5, RE ≡ La–Lu, J. Less-Common Met., 1987, vol. 128, pp. 269–280.

    Article  CAS  Google Scholar 

  10. Moran, D.M., Richardson, F.S., Koralewski, M., et al., Chiroptical activity of holmium pyrogermanate: tetragonal Ho2Ge2O7, J. Alloys Compd., 1992, vol. 180, pp. 171–175.

    Article  CAS  Google Scholar 

  11. Stadnicka, K., Glazer, A.M., Koralewski, M., et al., Structure and absolute optical chirality of thulium pyrogermanate crystals, J. Phys.: Condens. Matter, 1990, vol. 2, pp. 4795–4805.

    CAS  Google Scholar 

  12. Redhammer, G.J., Royh, G., and Amthauer, G., Yttrium pyrogermanate, Y2GeO5, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007, vol. 63, pp. i93–i95.

    Article  CAS  Google Scholar 

  13. Subramanian, M.A. and Sleight, A.W., Rare earth pyrochlores, in Handbook of the Physics and Chemistry of Rare Earths, 1993, vol. 16, pp. 225–248.

  14. Li, X., Cai, Y.Q., Cui, Q., et al., Long-range magnetic order in the Heisenberg pyrochlore antiferromagnets Gd2Ge2O7 and Gd2Pt2O7 synthesized under high pressure, Phys. Rev. B: Condens. Matter Mater. Phys., 2016, vol. 94, paper 214 429.

  15. Gavrichev, K.S., Ryumin, M.A., Nikiforova, G.E., et al., Phase transitions and thermodynamic properties of the LnAO4 (A = P, V, Nb) lanthanide compounds, Ross. Khim. Zh., 2005, vol. 59, nos. 1–2, pp. 11–18.

    Google Scholar 

  16. Denisova, L.T., Irtyugo, L.A., Beletskii, V.V., et al., High-temperature heat capacity of germanates Pr2Ge2O7 and Nd2Ge2O7 within 350–1000 K, Phys. Solid State, 2018, vol. 60, no. 3, pp. 626–630.

    Article  CAS  Google Scholar 

  17. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., Synthesis and high-temperature heat capacity of Y2Ge2O7, Russ. J. Inorg. Chem., 2018, vol. 63, no. 3, pp. 361–363.

    Article  CAS  Google Scholar 

  18. Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.

    Article  CAS  Google Scholar 

  19. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 93–95.

    Article  CAS  Google Scholar 

  20. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., Synthesis and high-temperature heat capacity of Sm2Ge2O7 and Eu2Ge2O7, Inorg. Mater., 2018, vol. 54, no. 2, pp. 167–170.

    Article  CAS  Google Scholar 

  21. Denisova, L.T., Kargin, Yu.F., Belousova, N.V., et al., Synthesis and high-temperature heat capacity of Dy2Ge2O7 and Ho2Ge2O7, Inorg. Mater., 2018, vol. 54, no. 4, pp. 361–365.

    Article  CAS  Google Scholar 

  22. Denisova, L.T., Irtyugo, L.A., and Denisov, V.M., Specific heat of the Er2Ge2O7–Er2Sn2O7 solid solutions in the temperature range of 350–1000 K, Phys. Solid State, 2019, vol. 61, no. 4, pp. 537–540.

    Article  CAS  Google Scholar 

  23. Denisova, L.T., Irtyugo, L.A., Belousova, N.V., et al., High temperature heat capacity and thermodynamic properties of the Tm2Ge2O7 and TmInGe2O7 in the region of 350–1000 K, Russ. J. Phys. Chem. A, 2019, vol. 93, no. 3, pp. 598–601.

    Article  CAS  Google Scholar 

  24. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  25. Maier, C.G. and Kelley, K.K., An equation for the representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, no. 8, pp. 3243–3246.

    Article  CAS  Google Scholar 

  26. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977, 3rd ed.

    Google Scholar 

  27. Jana, Y.M., Ghosh, M., Ghosh, D., et al., Measurements of the magnetic susceptibility and anisotropy of Tb2Ge2O7 single crystal, J. Magn. Magn. Mater., 2000, vol. 210, pp. 93–103.

    Article  CAS  Google Scholar 

  28. Ke, X., Dahlberg, M.L., Morosan, E., et al., Magnetothermodynamic of the Ising antiferromagnet Dy2Ge2O7, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 78, paper 104 411.

  29. Jana, Y.M., Ghosh, D., and Manklyn, B.M., Magnetic susceptibilities and anisotropy studies of holmium pyrogermanate (Ho2Ge2O7) crystal, J. Magn. Magn. Mater., 1998, vol. 183, pp. 135–142.

    Article  CAS  Google Scholar 

  30. Jana, Y.M. and Ghosh, D., Crystal-field of magnetic susceptibility, hyperfine, and specific heat properties of a Ho2Ge2O7 single crystal, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 61, no. 14, pp. 9657–9664.

    Article  CAS  Google Scholar 

  31. Morosan, E., Fleitman, J.A., Huang, Q., et al., Structure and magnetic properties of the Ho2Ge2O7 pyrogermanate, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, paper 224 423.

  32. Morachevskii, A.G., Sladkov, I.B., and Firsova, E.G., Termodinamicheskie raschety v khimii i metallurgii (Thermodynamic Calculations in Chemistry and Metallurgy), St. Petersburg: Lan’, 2018.

  33. Kubaschewski, O. and Alcock, S.B., Metallurgical Thermochemistry, Oxford: Pergamon, 1979, 5th ed.

    Google Scholar 

  34. Leitner, J., Chuchvalec, P., Sedmidyský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 295, pp. 27–46.

    Google Scholar 

  35. Kumok, V.N., Problem of matching techniques for evaluating thermodynamic characteristics, in Pryamye i obratnye zadachi khimicheskoi termodinamiki (Direct and Inverse Problems in Chemical Thermodynamics), Novosibirsk: Nauka, 1987, pp. 108–123.

  36. Bogach, V.V., Dobrydnev, S.V., and Beskov, V.S., Calculation of the thermodynamic properties of apatites, Russ. J. Inorg. Chem., 2001, vol. 46, no. 7, pp. 1011–1014.

    Google Scholar 

  37. Gordienko, S.P., Fenochka, B.V., and Viksman, G.Sh., Termodinamika soedinenii lantanoidov (Thermodynamics of Lanthanide Compounds), Kiev: Naukova Dumka, 1979.

  38. Leitner, J., Sedmidubský, D., and Chuchvalec, P., Prediction of heat capacities of solid binary oxides from group contribution method, Ceram.-Silik., 2002, vol. 46, no. 1, pp. 29–32.

    CAS  Google Scholar 

  39. Gurevich, V.M., Gavrichev, K.S., Gorbunov, V.E., et al., Thermodynamic properties of cassiterite SnO2(c) at 0–1500 K, Geochem. Int., 2004, vol. 42, no. 10, pp. 962–970.

    Google Scholar 

  40. De Ligny, D., Richet, P., Vestrum, E.F., Jr., et al., Heat capacity and entropy of rutile (TiO2) and nepheline (NaAlSiO4), Phys. Chem. Miner., 2002, vol. 29, pp. 267–272.

    Article  CAS  Google Scholar 

  41. Tret’yakov, Yu.D., Martynenko, L.I., Grigor’ev, A.N., and Tsivadze, A.Yu., Neorganicheskaya khimiya. Khimiya elementov (Inorganic Chemistry: The Chemistry of Elements), Moscow: Khimiya, 2001, vol. 1.

  42. Denisova, L.T., Kargin, Yu.F., and Denisov, V.M., Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets, Phys. Solid State, 2015, vol. 57, no. 8, pp. 1699–1703.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for Siberian Federal University in 2017–2019, project no. 4.8083.2017/8.9: Establishing a Database of Thermodynamic Characteristics of Multifunctional Mixed-Oxide Materials Containing Rare and Trace Elements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Kargin, Y.F., Belousova, N.V. et al. Heat Capacity of the R2Ge2O7 (R = Pr–Lu, Y) Rare-Earth Germanates. Inorg Mater 55, 952–958 (2019). https://doi.org/10.1134/S0020168519090024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519090024

Keywords:

Navigation