Skip to main content
Log in

High-Temperature Oxidation of Ti3SiC2-Based Materials Prepared by Spark Plasma Sintering

  • Published:
Inorganic Materials Aims and scope

Abstract

Materials based on the titanium carbosilicide Ti3SiC2 (MAX phase), prepared by spark plasma sintering (SPS), have been subjected to high-temperature tests. The high-temperature behavior of samples containing the carbosilicide phase and carbosilicide-free samples were studied. The results demonstrate that the presence of the MAX phase improves the heat resistance of the material, preventing oxidation. The oxidation products of the titanium carbosilicide-based materials are titanium dioxide, silicon monoxide, and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kablov, E.N., Innovative projects at the All-Russia Research Institute of Aviation Materials Russian Federation State Scientific Center (Federal State Unitary Enterprise) for implementing “Strategic directions in materials and materials processing technologies development over a period up to 2030,” Aviatsionnye Mater. Tekhnol., 2015, no. 1, pp. 3–33.

  2. Kablov, E.N., Advanced materials as a basis for innovative modernization of Russia, Mater. Evrazii, 2012, no. 3, pp. 10–15.

  3. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., Solntsev, S.S., and Sevast’yanov, V.G., Promising high-temperature ceramic composite materials, Ross. Khim. Zh., 2010, vol. 54, no. 1, pp. 20–24.

    CAS  Google Scholar 

  4. Barsoum, M.W., The M(N + 1)AX(N) phases: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, pp. 201–281.

    Article  CAS  Google Scholar 

  5. Barsoum, M.W.El. and Raghy, T., Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc., 1996, vol. 79, pp. 1953–1956.

    Article  CAS  Google Scholar 

  6. Zhou, Y.C. and Sun, Z.M., Microstructure and mechanism of damage tolerance for Ti3SiC2 bulk ceramics, Mater. Res. Innov., 1999, vol. 2, pp. 360–363.

    Article  CAS  Google Scholar 

  7. Low, I.M., Lee, S.K., and Lawn, B.R., Contact damage accumulation in Ti3SiC2, J. Am. Ceram. Soc., 1998, vol. 81, pp. 225–228.

    Article  CAS  Google Scholar 

  8. Bao, Y.W., Zhou, Y.C., and Zhang, H.B., Investigation on reliability of nanolayer-grained Ti3SiC2 via Weibull statistics, J. Mater. Sci., 2007, vol. 42, pp. 4470–4475.

    Article  CAS  Google Scholar 

  9. Zhang, H.B., Wang, X., Berthold, C., Nickel, K.G., and Zhou, Y.C., Effect of Al dopant on the hydrothermal oxidation behavior of Ti3SiC2 powders, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 2097–2103.

    Article  CAS  Google Scholar 

  10. Barsoum, M.W., Brodkin, D., and El-Raghy, T., Layered machinable ceramics for high temperature applications, Scr. Mater., 1997, vol. 36, no. 5, pp. 535–541.

    Article  CAS  Google Scholar 

  11. Pang, W.K., Low, I.M., Prince, K.E., and Atanacio, A.J., Mapping of elemental composition in air-oxidized Ti3SiC2, J. Austral. Ceram. Soc., 2008, vol. 44, no. 2, pp. 52–55.

    CAS  Google Scholar 

  12. Nadutkin, A.V., Istomin, P.V., and Ryabkov, Yu.I., Air oxidation of Ti3SiC2-based materials, Keramika i kompozitsionnye materialy: VI Vserossiskaya nauchnaya konferentsiya (Ceramics and Composite Materials: VI All-Russia Scientific Conf.), Syktyvkar, 2007, p. 53.

  13. Grashchenkov, D.V., Sevost’yanov, N.V., Efimochkin, I.Yu., and Burkovskaya, N.P., Synthesis of the Ti3SiC2 titanium carbosilicide by spark plasma sintering, Konstrukt. Kompoz. Mater., 2016, no. 4, pp. 23–26.

  14. Stumpf, K.M., Fey, T., and Greil, P., Thermochemical calculations of the stability of Ti2AlC in various atmospheres, J. Ceram. Sci. Technol., 2016, vol. 3, no. 7, pp. 223–228.

    Google Scholar 

  15. Raghy, T.El. and Barsoum, M.W., Processing and mechanical properties of Ti3SiC2. Reaction path and microstructure evolution, J. Am. Ceram. Soc., 1999, vol. 82, pp. 2849–2053.

    Article  Google Scholar 

  16. Luchaninov, A.A. and Strel’nitskii, V.E., Ti–Al–N coatings grown by PVD methods, Fiz. Inzh. Poverkhnosti, 2012, vol. 10, no. 1, pp. 5–24.

    Google Scholar 

  17. Muboyadzhyan, S.A., Budinovskii, S.A., Gayamov, A.M., and Matveev, P.V., High-temperature refractory coatings and refractory layers for thermal barrier coatings, Aviatsionnye Mater. Tekhnol., 2013, no. 1, pp. 17–20.

  18. Muboyadzhyan, S.A., Budinovskii, S.A., Gayamov, A.M., and Smirnov, A.A., Reparation of ceramic thermal barrier coatings for working blades of turbines of aviation gas turbine engines by magnetron sputtering, Aviatsionnye Mater. Tekhnol., 2012, no. 4, pp. 3–8.

  19. Kablov, E.N. and Muboyadzhyan, S.A., Heat-resistant coatings for the high-pressure turbine blades of promising GTEs, Russ. Metall. (Engl. Transl.), 2012, no. 1, pp. 1–7.

  20. Istomina, E.I., Siliciding of titanium carbides and titanium oxycarbides with gaseous silicon monoxide, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Syktyvkar: Inst. of Chemistry, Komi Scientific Center, Ural Branch, Russ. Acad. Sci., 2013.

  21. Hendaoui, A., Andasmas, M., Amara, A., Benaldjia, A., Langlois, P., and Vrel, D., SHS of high-purity MAX compounds in the Ti–Al–C system, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 2, pp. 129–134.

    Article  CAS  Google Scholar 

  22. Ghosh, N.Ch., Synthesis and tribological characterization of in-situ spark plasma sintered Ti3SiC2 and Ti3SiC2–TiC composites, Degree of Master of Science, Dhaka, 2009, p. 105.

  23. Sorokin, O.Yu., Solntsev, S.St., Evdokimov, S.A., and Osin, I.V., Hybrid spark plasma sintering method: principle, capabilities, and potential applications, Aviatsionnye Mater. Tekhnol., 2014, no. S6, pp. 11–16.

  24. The Encyclopedia of Mineralogy, Frye, K., Ed., Stroudsburg: Hutchinson Ross, 1981.

    Google Scholar 

  25. High-Temperature Technology, Campbell, I.E., Ed., New York: Wiley, 1956.

    Google Scholar 

  26. PDF card no. 21-1276.

Download references

ACKNOWLEDGMENTS

This work was carried out as part of the integrated research direction no. 12: Metal-Matrix and Polymatrix Composite Materials [1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sevost’yanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevost’yanov, N.V., Basargin, O.V., Maksimov, V.G. et al. High-Temperature Oxidation of Ti3SiC2-Based Materials Prepared by Spark Plasma Sintering. Inorg Mater 55, 9–13 (2019). https://doi.org/10.1134/S0020168519010114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519010114

Keywords:

Navigation